
Frequent Itemset Mining on
Large-Scale Shared Memory Machines

Yan Zhang, Fan Zhang, Jason Bakos
Dept. of CSE, University of South Carolina

315 Main St. Columbia SC 29201 USA
{zhangy,zhangf}@email.sc.edu, jbakos@cse.sc.edu

Abstract— Frequent Itemset Mining (FIM) is a data mining task
that is used to find frequently-occurring subsets amongst a
database of itemsets. FIM is a non-numerical data intensive
computation and is frequently used in machine learning and
computational biology applications. The development of
increasingly efficient FIM algorithms is an active field, but
exposing and exploiting parallelism is not often emphasized in
the development of new FIM algorithms. In this paper, we
explore parallel implementations of two FIM algorithms, Apriori
and Eclat, each using three different representations: vertical
transaction id set, vertical bitvector, and diffset. We
implemented these algorithms using OpenMP and evaluated
their resultant scalability on the 4096-core Intel Nehalem-EX
SGI Altix shared-memory machine Teragrid “Blacklight” using
16 processors (one blade) to 256 processors (16 blades) and
reported our results. We found that, while scalability generally
depends on the input data, Apriori is only scalable when used
with diffset. On the other side, Eclat is generally scalable but
achieves its best scalability with diffset.

Keywords-Frquent Itemset Mining; Apriori; Eclat; shared
memory; parallel

I. INTRODUCTION

Frequent Itemset Mining (FIM) is a generalized
computation for finding frequently-appearing subsets within a
database of sets. Many scientific and industrial applications
including those in machine learning, computational biology,
intrusion detection, web log mining, and e-business benefit
from the use of frequent itemset mining.

The objective of FIM is to identify the item subsets that
appear together in a transaction database when the number of
occurrences exceeds a given threshold. Three popular
algorithms for frequent itemset mining are Apriori, Eclat, and
FPgrowth [3, 5]. Each algorithm has its own advantages and
computational bottlenecks. Apriori is the oldest and simplest
of these but generally performs well for most datasets. Eclat
is different in that it adopts a depth-first approach to search
the candidate space. Compared to Apriori, Eclat has less data
dependence when computing candidate itemset support.

Based on serial algorithms, we describe parallel
implementation of Apriori and Eclat. Each of these algorithms
uses three different representations: vertical tidset, bitvector,
and diffset. We find that not only does the performance of
these algorithms rely on the choice of data representation, but
the scalability of the the parallel implementation is also

affected by it. Our implementation uses the OpenMP
scheduler to achieve efficient parallelization of these
algorithms. For both, we explore the performance and
scalability using the massively parallel shared memory
machine Teragrid Blacklight, scaling from 16 to 256
processors.

In this paper we perform a comprehensive evaluation of the
scalability for two FIM algorithms, each coupled with three
different dataset representaitons. Our results show that Eclat
is generally more scalable than Apriori, and the diffset data
representation is the most scalable among the dataset
representations.

II. BACKGROUND

In a widely cited example, supermarkets employ frequent
itemset mining to determine which products are often
purchased together. A popular anecdote describes how one
supermarket used FIM on their transaction database and was
surprised to discover that customers who purchased diapers
were likely to also purchase beer [7]. It was later discovered
that this behavior was caused by husbands picking up beer
after being sent out at night to purchase diapers. Discovering
the relationship between purchased items can help
supermarket management develop effective product
promotions and decide which items should be placed together
on the shelf. Similarly, online retailers can also use these
relationships to recommend related products.

Using a supermarket metaphor, items represent individual
items for sale. A transaction—or a “basket”--is analogous to
a receipt, or a combination of items that were purchased
together. A dataset is a set of transactions, and an itemset is a
subset of the items that appear in the transaction database. An
itemset of size k is called a k-itemset. FIM scans all the
transactions and counts the appearance of k-itemsets within
the dataset. The support of itemset X, or support(X) is the
number of the transactions that contain itemset X. An itemset
is frequent if its support is greater than a threshold value
min_sup. The frequent itemset mining is to find all itemsets
with support larger than min_sup in a given transaction
database D. Generally we make assumption that all items in
the itemset are sorted according to item number.

A. Candidate Representation

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CLUSTER.2011.69

580

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CLUSTER.2011.69

585

The “trie” data structure is most often used to represent
candidate itemsets [1-4]. A trie is a rooted, directed tree that
is used to generate and store the candidates for each
generation. Each path from the root to each leaf represents a
candidate. In order to make the code more efficient and
amenable to the OpenMP execution model, we represent the
trie using a table that stores the nodes associated with each
level of the tree.

B. Transaction Representation
The original implementations of Apriori used a traditional

horizontal representation for the transactions. In this case,
each transaction is represented as a list of items. Storing
transactions this way is inefficient and has thus given way to
the vertical representation, in which each item is associated
with a list of corresponding transactions that contain the item.
Vertical representation generally offers one order of
magnitude of performance gain since they reduce the volume
of I/O operations and avoid repetitive database scanning.

As Figure 1 (a) shows, in the horizontal format items are
stored in ordered way for each transaction. Figure 1 (b) shows
the equivalent vertical format of the above horizontal format.
This is also called the vertical tidset (transaction id set). In
tidset, support counting can be performed by intersection
operation. Let t(X) denote the tidset of item X and t(Y) denote
the tidset of item Y. Let P be a prefix. According to definition,
t(PX)= t(P) t(X), and t(PY)=t(P) t(Y). And thus,
t(PXY)=t(PX) t(PY). |t(PXY)|, i.e. the size of t(PXY), is the
support of PXY.

In Figure 1(c), the equivalent vertical bitvector format is
presented. In this format, the transactions associated with
each item are represented as a bitmask. The binary bit is set to
1 if the corresponding transaction is present; otherwise it is set
to 0. In this way, the length is fixed for all items. For dense
transaction data, the transaction data size of vertical bitvector
is substantially smaller than the vertical tidset format’s. This

is an advantage in terms of both running time and memory
space.

The third vertical data structure is diffset. Zaki and Gouda
first introduced diffset to reduce the memory requirement of
the vertical tidset representation [8]. It was originally
introduced to improve the Eclat algorithm. In this paper, it is
used with Apriori for the first time (as far as the authors
know).

 While tidset stores all the tids that contain the item, diffset
stores the difference in tids between an itemset and its prefix.
Suppose P is prefix of any length, X and Y are items. Let d(X)
denote the diffset of item. Let PXY be a new candidate,
generated by the union of PX and PY. A generalized
relationship between diffset and tidset can be summarized like
this:

d(PXY)=d(PY)-d(PX)
support(PXY)= support(PX)-|d(PXY)| Equation(1)

An equivalent diffset representation is shown in Figure 2.
Figure 2(a) shows the original tidset from Figure 1. The
support is shown in brackets. For 1-itemset, each diffset stores
the items which are not included in the tidset. In this example,
there are 6 items in total. Given threshold 3, there are only
three valid 1-itemsets, A, C and E. Others are struck out. For
the 2-itemset, we can get d(AC)= d(C) – d(A)=(3,5)-(4,5)=(3).
Item 5 is shared by both diffset, hence it is deleted. Item 4 is
only in diffset of A while not found in diffset of C, it’s not
needed in diffset of AC. In this case, the diffset of C subtracts
the diffset of A is the diffset of AC. The support of AC can be
obtained by support(AC) = support(A)-|d(AC)|=4-|(3)|=3,
where |d(AC)| is the size of itemset AC. Similarly, the diffset
and the support of AE and CE can be achieved in the same
way. For 3-itemset, ACE, the diffset can be summarized as
d(ACE) = d(AE) –d(AC), support(ACE)= support(AC)-
|d(ACE)|.

III. PARALLELLIZING APRIORI

Figure 2. Diffset example

Figure 1. Horizontal and Vertical dataset representation

581586

In general, Apriori consists of iteratively performing three
stages: candidate generation, support counting, and candidate
pruning. Figure 3 gives pseudo code of Apriori. The
algorithm takes, as input, the transaction dataset and
min_support, and provides as output frequent candidates and
their corresponding support after each successive candidate
size or generation.

Lines 4-12 describe the loop for one single generation.
Support counting determines the support of each candidate.
Candidates with support less than the threshold are pruned.
The next generation of candidates is generated based on the
remaining candidates. The algorithm terminates when no
more frequent candidates can be found.

For tidset, the task is to find the common id within two
parents’ tidsets. Thenew tidset is the intersection part of two
pareents’ tidest.The size of new tidset, or cardinality, is the
support. The support counting of the vertical bitvector and
diffset is very similar to the tidset’s implementation. The
difference lies in the way that they calculate the support. For
vertical bitvector, the algorithm performs a “bitwise and”
operation on two parent candidates and the support is
computed with a population count on the bitvector. For diffset,
the way to calculate support and diffset is listed in Equation 1.

The time consuming part is the support counting. In
traditional horizontal data representation, when using parallel
threads to perform support counting, each thread is assigned to
count the candidates within a transaction. If multiple threads
try to increment the support counter for a candidate, race
condition is inevitable. In this case, the program needs to use
locks, atomic or critical pragma to protect the data. Thanks to
the vertical data representation, in vertical support counting,
each thread calculates an independent support and does not
have data dependency of each other. In this way, the data and
task will be automatically distributed among threads and no
complex parallel algorithm is needed. Compared to horizontal
Apriori, vertical representation not only improves the
performance but it also simplifies the parallelization by
removing data dependency.

In the support counting of Algorithm 3, we choose to
parallelize the outer-most loop in support counting, which do
the support counting for each candidate. In this loop, threads
are assigned to compute the new transaction representation
and the support. Different scheduling policies like dynamic,
guided and static are available in OpenMP. Dynamic and
guided schedulings are usually chosen to allieviate the load
imbalance. In this case, the static scheduling can partition the
workload as there enough iterations in Apriori. We don’t need
to worry the load imbalance problem in this case.

IV. PARALLELLIZING ECLAT

Eclat is the abbreviation for Equivalence CLAss
Transformation algorithm. Apriori is a breadth-first search in
the sense that all frequent candidates of one generation are
calculated and pruned, and then algorithm moves to the next
generation.

Eclat uses a depth-first approach: once a candidate is found,
it is used as a prefix to recursively search for larger candidates
with that prefix. Figure 4 shows the algorithm for Eclat. Line
1 initializes the candidate to 1-itemset. Lines 2 to line 12 is
the recursive function to find frequent itemsets. Lines 3 to
line 12 is the loop to scan all input candidates. From lines 4 to
6, a pair of parent candidates generates a new candidate p, and
then the support is calculated using whatever dataset
representation is specified. If the candidate is frequent, new
candidates will be generated and added to candidate set Ci+1

and function Eclat() is recursively called.
As we did for Apriori, we evaluated the tidset, bitvector,

and diffset representations. Each thread stores and calculates
support independently, eliminating the need to protect
candidate data. Unlike Apriori, once the base transaction data
is read, each thread will generate its own transaction
representation data and do the support counting. These
generated data can be reused and does not need to share with
others. The data independence among Eclat loop iterations

__
Algorithm 1: Apriori
--
Input: D ---Transaction Dataset
 min_sup -- Minmum support
Output: Ci --Frequent Candidate for generation i
 Si -- Support for i generation candidate

1: i= 1; //generation number
2: Ci initialized to all 1-item frequent candidate

 3: Let ||Ci| be the size of set Ci
4: While ||Ci|| != 0 do
5: {
6: Let si

j be the number j counter within Si

7: Reset all
ii

j Ss ∈ to 0;

8: Si = support_counting(Ci, D);
9: candidate_pruning(Ci, min_sup, Si);
10: Ci+1 = candidate_generation(Ci) ;
11: i++;
12: }
__

Figure 3 Apriori Algorithm

__
Algorithm 2: Eclat
--
Input: C1 --Frequent Candidate for generation 1

min_sup -- Minimum support
Output: Frequent Candidate for all generations

1: Ci initialize to C1

 2: Eclat(Ci) :

3: for all i

j
Cc i ∈ do

4: for all iCc i
k ∈ , with k>j do

5: if i
kc and i

jc shares prefix of length (i-1)

6: i
j

i
k ccp = ;//generate new candidate p

7: support_counting(p);
8: if support(p)>=min_sup
9: Ci+1 =Ci+1 p; // Ci+1 initially empty

 10: if Ci+1not empty do Eclat(Ci+1)
 11: End forall
 12: End forall
 __

Figure 4. Eclat Algorithm

582587

helps parallel implementation minimize the memory exchange
and thus improve the scalability.

We parallelized Eclat using shared memory OpenMP. The
OpenMP scheduler divides the workload and distributes the
data. The most time consuming part of the program is the
recursive Eclat() function, which is the outer loop of the
program. The threads are invoked at line 3 of algorithm 2 and
joined at line 12. Parallelizing this outer loop reduces the
thread invocation cost but also poses a limit on the possible
number of threads.

For OpenMP scheduler, we hope each thread can start with
its own input data. So we choose the chunksize to as small as
possible. The scheduler is set to dynamic so that the load
imbalance can be minimized, which is different from parallel
Apriori’s static setting.

V. EVALUATION

We tested our implementation on an SGI UV 1000cc
machine Blacklight, a Non-Uniform Memory Access shared-
memory system comprising 256 blades. It’s an SMP platform
ideal for applications that require a large shared memory for
computational tasks. Each blade holds 2 Intel Xeon X7560
(Nehalem) eight-core processors, for a total of 4096 cores
across the whole machine. Each core has a clock rate of 2.27
GHz, supports two hardware threads using hyper thread and
can perform 9 Gflops. We did not use hyper thead as it does
not improve our program performance. The sixteen cores on
each blade share 128 Gbytes of local memory. In this way,
each core has 8 Gbytes of local memory- totalling 32 TB of
memory for the system. Two Single System Images with 16
TB of shared memory each are connected by a NumaLink5
Shared Memory Interconnect. The program is compiled on
Intel’s C/C++ compiler 11.1, which supports OpenMP 3.0.

Experimental results of four different databases--chess,
mushroom, pumsb, and pumsb_star--are compared. The size
of these datasets varies, from 334KB to 15.9MB. All the
datasets can be found at the Frequent Itemset Mining

Implementations Repository [6] and are popular datasets in
frequent itemset mining and their experimental results have
been extensively reported.

Table 1 summarizes the datasets we used in our
experiments. As you can see, four datasets show various
characteristics. The mushroom dataset includes information
about various species of mushroom. Chess, pumsb and
pumsb_star are from UCI dataset and PUMSB by Robero
Bayrdo. The pumsb_star dataset contains census data for
population and housing and is a variation of the pumsb dataset
but is restricted in that it does not contain any item with a
support of 80% or more. In addition, some other dataset from
the FIM Repository, like T40I10D100K and accidents have
also been tested. Because the number of items is less than the
number of processors, they did not show scalability beyond 64
threads and we did not report them here.

A. Apriori
For each representation, we tested the program with all

datasets. However, the tidset and bitvector implementation
did not show scalability beyond 16 cores. Due to limited
space, we do not report them here. However, in Table II, for
Apriori with Diffset, we achieve much better scalability. The
table above the plot summarizes the execution time for dataset.
The support level is represented as relative number compared
to total transaction number. For example, chess@0.2 means
dataset chess is tested with support 20%. The execution time
is in seconds. Figure 5 shows the speedup relative to one
thread. We achieve a speedup of 52X for 256 threads for the
mushroom dataset.

The experimental results show the tidset and bitvector
implementation of Apriori are not scalable beyond 16 threads,
or one blade. The poor scalability of these two dataset
representations is due to two factors. First, tidset and
bitvector have a larger memory footprint than diffset. Second,
Apriori requires a substantial amount of memory exchange for
transactional data. Compared to Eclat, Apriori must store all
candidates for each generation, thus the transaction database is
much larger. Because the number of candidates can be
substantial, the size of tidset and bitvecotor is generally one
order of magnitude larger than the diffset’s. When generating
candidates, each thread must read two parent candidates in
order to generate the new candidate. NUMA transactions
cause communication overhead when the parent candidates
are stored on a remote node. However, Apriori shows
scalability from 16 to 256 threads for diffset. Experimental
result proves that diffset not only improves the performance of
Apriori, but is also more scalable. The reason is that diffset

TABLE I. SUMMARY OF TEST DATASETS

Dataset Number
of Item

Average
Length

Number of
Transaction Size

chess 75 36 3,195 334K
mushroom 119 22 8,124 557K

pumsb 2113 73 49,046 15.9M

pumsb_star 2088 50 49,046 10.8M

TABLE II. RUNNING TIME FOR APRIORI WITH DIFFSET

Testset 1
thread

16
 threads

32
threads

64
threads

128
threads

256
threads

Figure 5. Scalability of Apriori with Diffset.

583588

can reduce the memory exchange by reducing the transaction
size dramatically.

B. Eclat
Tables III-V show the execution times in seconds of the

parallelized Eclat algorithm with Tidset, Bitvector, and Diffset
respectively. Figures 6-8 shows the speedup relative to one
thread. The horizontal axis is thread count and the vertical
axis is speedup. Although speedup varies among dataset; all
the datasets are scale with the number of threads. The best
results are shown for the Tidset implementation with the
pumsb dataset (171 X for 256 threads).

VI. CONCLUSION

In summary, we present two parallel FIM algorithms,
Apriori and Eclat on shared memory platform, using three
different vertical data representations. Experimental results
show Eclat is scalable for all three vertical representations, but
achieves the best performance with diffset. This is because
Eclat algorithm has better data independence and requires
much less communication overhead than Apriori. Parallel
Apriori is only scalable when used with the Diffset transaction
representation. The reason is that memory sharing and
communication of diffset implementation is less compared to
those of tidset and bitvector.

ACKNOWLEDGMENT

This research was supported in part by the National
Science Foundation through TeraGrid resources provided by
Pittsburgh Supercomputing Centre under grant number [TG-
TRA110001].

REFERENCES

[1] F. Bodon, “A Fast Apriori Implementation” Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations, (2003).

[2] F. Bodon, “Surprising Results of Trie-based FIM Algorithm”
Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining
Implementations (2004).

[3] F. Bodon, A Survey on Frequent Itemset Mining, Technical Report,
Budapest University of Technology and Economic, 2006.

[4] F. Bodon, and L. R´onyai, “Trie: an alternative data structure for data
mining algorithms,” Mathematical and Computer Modelling Volume
38, Issues 7-9, October 2003, pp.739-751.

[5] B. Goethals, Survey on frequent pattern mining, Technical report,
Helsinki Institute for Information Technology, 2003.

[6] Frequent Itemset Mining Implementations Repository
http://fimi.cs.helsinki.fi/src.

[7] Ian H. Witten and Eibe Frank, Data mining: practical machine
learning tools and techniques.2nd edition, Morgan Kaufmann (2005)
pp27

[8] J. Ruoming, Y. Ge, G. Agrawal, “Shared memory parallelization of
data mining algorithms: techniques, programming interface, and
performance” IEEE Transactions on Knowledge and Data Engineering,
Vol 17, Issue 1, 2005.

TABLE VI. RUNNING TIME FOR ECLAT WITH BITVECTOR

Testset 1
thread

16
 threads

32
threads

64
threads

128
threads

256
threads

Figure 7. Scalability of Eclat with Bitvector.

TABLE III. RUNNING TIME FOR ECLAT WITH TIDSET

Testset 1
 thread

16
 threads

32
threads

64
threads

128
threads

256
threads

Figure 6. Scalability of Eclat with Tidset.

TABLE V. RUNNING TIME FOR ECLAT WITH DIFFSET

Testset 1
 thread

16
 threads 32 threads 64

threads
128

threads
256

threads

Figure 8. Scalability of Eclat with Diffset.

584589

