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Abstract— Frequent Itemset Mining (FIM) is a data mining task 
that is used to find frequently-occurring subsets amongst a 
database of itemsets.  FIM is a non-numerical data intensive 
computation and is frequently used in machine learning and 
computational biology applications.  The development of 
increasingly efficient FIM algorithms is an active field, but 
exposing and exploiting parallelism is not often emphasized in 
the development of new FIM algorithms.  In this paper, we 
explore parallel implementations of two FIM algorithms, Apriori 
and Eclat, each using three different representations:  vertical 
transaction id set, vertical bitvector, and diffset.  We 
implemented these algorithms using OpenMP and evaluated 
their resultant scalability on the 4096-core Intel Nehalem-EX 
SGI Altix shared-memory machine Teragrid “Blacklight” using 
16 processors (one blade) to 256 processors (16 blades) and 
reported our results.  We found that, while scalability generally 
depends on the input data, Apriori is only scalable when used 
with diffset. On the other side, Eclat is generally scalable but 
achieves its best scalability with diffset. 

Keywords-Frquent Itemset Mining; Apriori; Eclat; shared 
memory; parallel 

I. INTRODUCTION

Frequent Itemset Mining (FIM) is a generalized 
computation for finding frequently-appearing subsets within a 
database of sets.  Many scientific and industrial applications 
including those in machine learning, computational biology, 
intrusion detection, web log mining, and e-business benefit 
from the use of frequent itemset mining. 

The objective of FIM is to identify the item subsets that 
appear together in a transaction database when the number of 
occurrences exceeds a given threshold.  Three popular 
algorithms for frequent itemset mining are Apriori, Eclat, and 
FPgrowth [3, 5]. Each algorithm has its own advantages and 
computational bottlenecks.  Apriori is the oldest and simplest 
of these but generally performs well for most datasets.  Eclat 
is different in that it adopts a depth-first approach to search 
the candidate space.   Compared to Apriori, Eclat has less data 
dependence when computing candidate itemset support.  

Based on serial algorithms, we describe parallel 
implementation of Apriori and Eclat. Each of these algorithms 
uses three different representations:  vertical tidset, bitvector,
and diffset.  We find that not only does the performance of 
these algorithms rely on the choice of data representation, but 
the scalability of the the parallel implementation is also 

affected by it.  Our implementation uses the OpenMP 
scheduler to achieve efficient parallelization of these 
algorithms.  For both, we explore the performance and 
scalability using the massively parallel shared memory 
machine Teragrid Blacklight, scaling from 16 to 256 
processors. 

In this paper we perform a comprehensive evaluation of the 
scalability for two FIM algorithms, each coupled with three 
different dataset representaitons.  Our results show that Eclat 
is generally more scalable than Apriori, and the diffset data 
representation is the most scalable among the dataset 
representations. 

II. BACKGROUND

In a widely cited example, supermarkets employ frequent 
itemset mining to determine which products are often 
purchased together. A popular anecdote describes how one 
supermarket used FIM on their transaction database and was 
surprised to discover that customers who purchased diapers 
were likely to also purchase beer [7].  It was later discovered 
that this behavior was caused by husbands picking up beer 
after being sent out at night to purchase diapers. Discovering 
the relationship between purchased items can help 
supermarket management develop effective product 
promotions and decide which items should be placed together 
on the shelf.  Similarly, online retailers can also use these 
relationships to recommend related products. 

Using a supermarket metaphor, items represent individual 
items for sale.  A transaction—or a “basket”--is analogous to 
a receipt, or a combination of items that were purchased 
together.  A dataset is a set of transactions, and an itemset is a 
subset of the items that appear in the transaction database.  An 
itemset of size k is called a k-itemset.  FIM scans all the 
transactions and counts the appearance of k-itemsets within 
the dataset.   The support of itemset X, or support(X) is the 
number of the transactions that contain itemset X.  An itemset 
is frequent if its support is greater than a threshold value 
min_sup. The frequent itemset mining is to find all itemsets 
with support larger than min_sup in a given transaction 
database D.  Generally we make assumption that all items in 
the itemset are sorted according to item number. 

A. Candidate   Representation 

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CLUSTER.2011.69

580

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CLUSTER.2011.69

585



The “trie” data structure is most often used to represent 
candidate itemsets [1-4].  A trie is a rooted, directed tree that 
is used to generate and store the candidates for each 
generation. Each path from the root to each leaf represents a 
candidate.  In order to make the code more efficient and 
amenable to the OpenMP execution model, we represent the 
trie using a table that stores the nodes associated with each 
level of the tree. 

B. Transaction Representation 
The original implementations of Apriori used a traditional 

horizontal representation for the transactions.  In this case, 
each transaction is represented as a list of items.  Storing 
transactions this way is inefficient and has thus given way to 
the vertical representation, in which each item is associated 
with a list of corresponding transactions that contain the item. 
Vertical representation generally offers one order of 
magnitude of performance gain since they reduce the volume 
of I/O operations and avoid repetitive database scanning.  

As Figure 1 (a) shows, in the horizontal format items are 
stored in ordered way for each transaction.  Figure 1 (b) shows 
the equivalent vertical format of the above horizontal format.  
This is also called the vertical tidset (transaction id set).  In 
tidset, support counting can be performed by intersection 
operation.  Let t(X) denote the tidset of item X and t(Y) denote 
the tidset of item Y.  Let P be a prefix. According to definition, 
t(PX)= t(P)  t(X), and t(PY)=t(P) t(Y).  And thus, 
t(PXY )=t(PX) t(PY ). |t(PXY)|, i.e. the size of t(PXY), is the 
support of PXY.

In Figure 1(c), the equivalent vertical bitvector format is 
presented.  In this format, the transactions associated with 
each item are represented as a bitmask.  The binary bit is set to 
1 if the corresponding transaction is present; otherwise it is set 
to 0. In this way, the length is fixed for all items.  For dense 
transaction data, the transaction data size of vertical bitvector
is substantially smaller than the vertical tidset format’s.  This 

is an advantage in terms of both running time and memory 
space. 

The third vertical data structure is diffset.  Zaki and Gouda 
first introduced diffset to reduce the memory requirement of 
the vertical tidset representation [8].  It was originally 
introduced to improve the Eclat algorithm.  In this paper, it is 
used with Apriori for the first time (as far as the authors 
know). 

 While tidset stores all the tids that contain the item, diffset
stores the difference in tids between an itemset and its prefix. 
Suppose P is prefix of any length, X and Y are items. Let d(X)
denote the diffset of item.  Let PXY be a new candidate, 
generated by the union of PX and PY.  A generalized 
relationship between diffset and tidset can be summarized like 
this: 

d(PXY)=d(PY)-d(PX) 
support(PXY)= support(PX)-|d(PXY)|  Equation(1)

An equivalent diffset representation is shown in Figure 2.  
Figure 2(a) shows the original tidset from Figure 1. The 
support is shown in brackets.  For 1-itemset, each diffset stores 
the items which are not included in the tidset.  In this example, 
there are 6 items in total.  Given threshold 3, there are only 
three valid 1-itemsets, A, C and E.  Others are struck out.  For 
the 2-itemset, we can get d(AC)= d(C) – d(A)=(3,5)-(4,5)=(3).
Item 5 is shared by both diffset, hence it is deleted.  Item 4 is 
only in diffset of A while not found in diffset of C, it’s not 
needed in diffset of AC.  In this case, the diffset of C subtracts 
the diffset of A is the diffset of AC. The support of AC can be 
obtained by support(AC) = support(A)-|d(AC)|=4-|(3)|=3,
where |d(AC)| is  the size of itemset AC.  Similarly, the diffset
and the support of AE and CE can be achieved in the same 
way.  For 3-itemset, ACE, the diffset can be summarized as 
d(ACE) = d(AE) –d(AC), support(ACE)= support(AC)- 
|d(ACE)|. 

III. PARALLELLIZING APRIORI

Figure 2.    Diffset example 

Figure 1.    Horizontal and Vertical dataset representation
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In general, Apriori consists of iteratively performing three 
stages:  candidate generation, support counting, and candidate 
pruning.  Figure 3 gives pseudo code of Apriori.  The 
algorithm takes, as input, the transaction dataset and 
min_support, and provides as output frequent candidates and 
their corresponding support after each successive candidate 
size or generation. 

Lines 4-12 describe the loop for one single generation. 
Support counting determines the support of each candidate.  
Candidates with support less than the threshold are pruned.  
The next generation of candidates is generated based on the 
remaining candidates.  The algorithm terminates when no 
more frequent candidates can be found. 

For tidset, the task is to find the common id within two 
parents’ tidsets. Thenew tidset is the intersection part of two 
pareents’ tidest.The size of new tidset, or cardinality, is the 
support.  The support counting of the vertical bitvector and 
diffset is very similar to the tidset’s implementation.  The 
difference lies in the way that they calculate the support.  For 
vertical bitvector, the algorithm performs a “bitwise and” 
operation on two parent candidates and the support is 
computed with a population count on the bitvector.  For diffset,
the way to calculate support and diffset is listed in Equation 1. 

The time consuming part is the support counting. In 
traditional horizontal data representation, when using parallel 
threads to perform support counting, each thread is assigned to 
count the candidates within a transaction.  If multiple threads 
try to increment the support counter for a candidate, race 
condition is inevitable.  In this case, the program needs to use 
locks, atomic or critical pragma to protect the data.  Thanks to 
the vertical data representation, in vertical support counting, 
each thread calculates an independent support and does not 
have data dependency of each other.  In this way, the data and 
task will be automatically distributed among threads and no 
complex parallel algorithm is needed.  Compared to horizontal 
Apriori, vertical representation not only improves the 
performance but it also simplifies the parallelization by 
removing data dependency.  

In the support counting of Algorithm 3, we choose to 
parallelize the outer-most loop in support counting, which do 
the support counting for each candidate. In this loop, threads 
are assigned to compute the new transaction representation 
and the support.  Different scheduling policies like dynamic, 
guided and static are available in OpenMP. Dynamic and 
guided schedulings are usually chosen to allieviate the load 
imbalance. In this case, the static scheduling can partition the 
workload as there enough iterations in Apriori. We don’t need 
to worry the load imbalance problem in this case. 

IV. PARALLELLIZING ECLAT

Eclat is the abbreviation for Equivalence CLAss 
Transformation algorithm.  Apriori is a breadth-first search in 
the sense that all frequent candidates of one generation are 
calculated and pruned, and then algorithm moves to the next 
generation. 

Eclat uses a depth-first approach:  once a candidate is found, 
it is used as a prefix to recursively search for larger candidates 
with that prefix.  Figure 4 shows the algorithm for Eclat.  Line 
1 initializes the candidate to 1-itemset.  Lines 2 to line 12 is 
the recursive function to find frequent itemsets.  Lines 3 to 
line 12 is the loop to scan all input candidates.  From lines 4 to 
6, a pair of parent candidates generates a new candidate p, and 
then the support is calculated using whatever dataset 
representation is specified.  If the candidate is frequent, new 
candidates will be generated and added to candidate set Ci+1

and function Eclat() is recursively called. 
As we did for Apriori, we evaluated the tidset, bitvector, 

and diffset representations.  Each thread stores and calculates 
support independently, eliminating the need to protect 
candidate data.  Unlike Apriori, once the base transaction data 
is read, each thread will generate its own transaction 
representation data and do the support counting. These 
generated data can be reused and does not need to share with 
others.  The data independence among Eclat loop iterations 

____________________________________________ 
Algorithm 1: Apriori 
------------------------------------------------------------------ 
Input:   D ---Transaction Dataset 
             min_sup -- Minmum support 
Output: Ci --Frequent Candidate for generation i 
              Si -- Support for i generation candidate      
------------------------------------------------------------------- 
1:           i= 1; //generation number 
2:          Ci initialized to all 1-item frequent candidate 

        3:          Let ||Ci| be the size of set Ci           
4:          While ||Ci|| != 0 do
5:           { 
6:                Let si

j  be the number j counter within Si

7:               Reset all
ii

j Ss ∈ to 0; 

8:                Si = support_counting(Ci, D); 
9:                candidate_pruning(Ci, min_sup, Si  ); 
10:                Ci+1 = candidate_generation(Ci ) ; 
11:              i++; 
12:            } 
____________________________________________ 

Figure 3  Apriori Algorithm  

____________________________________________ 
Algorithm 2: Eclat 
------------------------------------------------------------------ 
Input:     C1 --Frequent Candidate for generation 1 

min_sup -- Minimum support 
Output:  Frequent Candidate for all generations 
------------------------------------------------------------------- 
1:          Ci initialize to C1

        2:          Eclat(Ci) :         

3:             for all i

j
Cc i ∈ do

4:                for all iCc i
k ∈ , with k>j  do 

5:                  if i
kc and i

jc shares prefix of length (i-1) 

6:                      i
j

i
k ccp =  ;//generate new candidate p

7:                   support_counting(p); 
8:                   if support(p)>=min_sup 
9:                   Ci+1 =Ci+1 p;  // Ci+1 initially empty 

       10:                  if Ci+1not empty do Eclat(Ci+1)
       11:               End forall 
       12:            End forall 
       ____________________________________________ 

Figure 4.  Eclat Algorithm  
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helps parallel implementation minimize the memory exchange 
and thus improve the scalability. 

We parallelized Eclat using shared memory OpenMP.  The 
OpenMP scheduler divides the workload and distributes the 
data. The most time consuming part of the program is the 
recursive Eclat() function, which is the outer loop of the 
program. The threads are invoked at line 3 of algorithm 2 and 
joined at line 12. Parallelizing this outer loop reduces the 
thread invocation cost but also poses a limit on the possible 
number of threads. 

For OpenMP scheduler, we hope each thread can start with 
its own input data. So we choose the chunksize to as small as 
possible.  The scheduler is set to dynamic so that the load 
imbalance can be minimized, which is different from parallel 
Apriori’s static setting. 

V. EVALUATION

We tested our implementation on an SGI UV 1000cc 
machine Blacklight, a Non-Uniform Memory Access shared-
memory system comprising 256 blades. It’s an SMP platform 
ideal for applications that require a large shared memory for 
computational tasks.  Each blade holds 2 Intel Xeon X7560 
(Nehalem) eight-core processors, for a total of 4096 cores 
across the whole machine.  Each core has a clock rate of 2.27 
GHz, supports two hardware threads using hyper thread and 
can perform 9 Gflops. We did not use hyper thead as it does 
not improve our program performance. The sixteen cores on 
each blade share 128 Gbytes of local memory.  In this way, 
each core has 8 Gbytes of local memory- totalling 32 TB of 
memory for the system.  Two Single System Images with 16 
TB of shared memory each are connected by a NumaLink5 
Shared Memory Interconnect.  The program is compiled on 
Intel’s C/C++ compiler 11.1, which supports OpenMP 3.0.  

Experimental results of four different databases--chess, 
mushroom, pumsb, and pumsb_star--are compared.  The size 
of these datasets varies, from 334KB to 15.9MB.  All the 
datasets can be found at the Frequent Itemset Mining 

Implementations Repository [6] and are popular datasets in 
frequent itemset mining and their experimental results have 
been extensively reported.  

Table 1 summarizes the datasets we used in our 
experiments. As you can see, four datasets show various 
characteristics. The mushroom dataset includes information 
about various species of mushroom.  Chess, pumsb and 
pumsb_star are from UCI dataset and PUMSB by Robero 
Bayrdo.  The pumsb_star dataset contains census data for 
population and housing and is a variation of the pumsb dataset 
but is restricted in that it does not contain any item with a 
support of 80% or more.  In addition, some other dataset from 
the FIM Repository, like T40I10D100K and accidents have 
also been tested.  Because the number of items is less than the 
number of processors, they did not show scalability beyond 64 
threads and we did not report them here. 

A. Apriori 
For each representation, we tested the program with all 

datasets.  However, the tidset and bitvector implementation 
did not show scalability beyond 16 cores.  Due to limited 
space, we do not report them here.  However, in Table II, for 
Apriori with Diffset, we achieve much better scalability.  The 
table above the plot summarizes the execution time for dataset.  
The support level is represented as relative number compared 
to total transaction number.  For example, chess@0.2 means 
dataset chess is tested with support 20%.  The execution time 
is in seconds.  Figure 5 shows the speedup relative to one 
thread.  We achieve a speedup of 52X for 256 threads for the 
mushroom dataset. 

The experimental results show the tidset and bitvector
implementation of Apriori are not scalable beyond 16 threads, 
or one blade.  The poor scalability of these two dataset 
representations is due to two factors.  First, tidset and 
bitvector have a larger memory footprint than diffset.  Second, 
Apriori requires a substantial amount of memory exchange for 
transactional data.  Compared to Eclat, Apriori must store all 
candidates for each generation, thus the transaction database is 
much larger.  Because the number of candidates can be 
substantial, the size of tidset and bitvecotor is generally one 
order of magnitude larger than the diffset’s.  When generating 
candidates, each thread must read two parent candidates in 
order to generate the new candidate.  NUMA transactions 
cause communication overhead when the parent candidates 
are stored on a remote node. However, Apriori shows 
scalability from 16 to 256 threads for diffset.   Experimental 
result proves that diffset not only improves the performance of 
Apriori, but is also more scalable.  The reason is that diffset

TABLE I. SUMMARY OF TEST DATASETS

Dataset Number 
of Item 

Average 
Length 

Number of 
Transaction Size 

chess 75 36 3,195 334K 
mushroom 119 22 8,124 557K 

pumsb 2113 73 49,046 15.9M 

pumsb_star 2088 50 49,046 10.8M 

TABLE II. RUNNING TIME FOR APRIORI WITH DIFFSET

Testset 1
thread

16
 threads 

32
threads

64
threads

128
threads

256
threads

Figure 5.  Scalability of Apriori with Diffset. 
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can reduce the memory exchange by reducing the transaction 
size dramatically. 

B. Eclat 
Tables III-V show the execution times in seconds of the 

parallelized Eclat algorithm with Tidset, Bitvector, and Diffset 
respectively.  Figures 6-8 shows the speedup relative to one 
thread.  The horizontal axis is thread count and the vertical 
axis is speedup.  Although speedup varies among dataset; all 
the datasets are scale with the number of threads.  The best 
results are shown for the Tidset implementation with the 
pumsb dataset (171 X for 256 threads). 

VI. CONCLUSION 

In summary, we present two parallel FIM algorithms, 
Apriori and Eclat on shared memory platform, using three 
different vertical data representations.  Experimental results 
show Eclat is scalable for all three vertical representations, but 
achieves the best performance with diffset.  This is because 
Eclat algorithm has better data independence and requires 
much less communication overhead than Apriori.  Parallel 
Apriori is only scalable when used with the Diffset transaction 
representation.  The reason is that memory sharing and 
communication of diffset implementation is less compared to 
those of tidset and bitvector.
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TABLE VI. RUNNING TIME FOR ECLAT WITH BITVECTOR

Testset 1
thread 

16
 threads 

32
threads 

64
threads 

128
threads 

256
threads 

Figure 7.  Scalability of Eclat with Bitvector. 

TABLE III. RUNNING TIME FOR ECLAT WITH TIDSET

Testset 1
 thread 

16
 threads 

32
threads 

64
threads 

128
threads 

256
threads 

Figure 6.  Scalability of Eclat with Tidset. 

TABLE V. RUNNING TIME FOR ECLAT WITH DIFFSET

Testset 1
 thread 

16
 threads 32 threads 64

threads 
128

threads 
256

threads 

Figure 8.  Scalability of Eclat with Diffset. 
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