
GPApriori: GPU-Accelerated
Frequent Itemset Mining

Fan Zhang
Department of Computer Science

University of South Carolina
Columbia, SC, U.S.

zhangf@email.sc.edu

Yan Zhang
Department of Computer Science

University of South Carolina
Columbia, SC, U.S.

zhangy@email.sc.edu

Jason Bakos
Department of Computer Science

University of South Carolina
Columbia, SC, U.S.
jbakos@cse.sc.edu

Abstract—In this paper we describe GPApriori, a GPU-
accelerated implementation of Frequent Itemset Mining
(FIM). We tested our implementation with an Nvidia Tesla
T10 graphic processor and demonstrate up to 100X speedup
as compared with several state-of-the-art FIM algorithms on a
CPU. In order to map the Apriori algorithm onto the SIMD
execution model, we have designed a “static bitset” memory
structure to represent the input database. This data structure
improves upon the traditional approach of the vertical data
layout in state-of-the art Apriori implementations. In our
implementation, we perform a parallelized version of the
support counting step on the GPU. Experimental results show
that GPApriori consistently outperforms CPU-based Apriori
implementations. Our results demonstrate the potential for
GPGPUs in speeding up data mining algorithms.

Keywords: Association rule mining, Frequent itemset
mining, CUDA GPU computing, Parallel Computing.

I. INTRODUCTION

Frequent Itemset Mining (FIM) algorithms are used for
finding common and potentially interesting patterns in
large-scale databases. In FIM algorithms, the data in the
database are called transactions, each of which is a set of
items labelled by a unique ID. The purpose of FIM is to
find the most frequently-occurring subsets from the
transactions. The frequency of the subset is measured by
support ratio, which is the number of transactions
containing the subset divided by the total number of
transactions in the database. FIM algorithms are given a
minimum support ratio threshold, and returns all the
frequent item sets with support ratio meeting the threshold.

FIM is common in many research and commercial
applications. An example can be shown in the sales data
analysis of supermarkets. Customers usually purchase
goods in a pattern (e.g. people who buy vegetables often
also buy salad dressing), and those common shopping
patterns can be discovered by mining receipts. Analysis of
those patterns can be useful for designing the layout of the
supermarket: products usually sold together can be placed
near each other. FIM is also useful in database management
systems, information retrieval, bioinformatics, data stream
analysis, and computer vision.

Our GPU implementation includes a set of fine-grained
parallel data structures and algorithms design to achieve
premising degree of speed up on modern GPU compared

with state-of-the-art serial implementation. Experiment
results show that our GPU implementation is more
effective (over 100x speed up) on large and dense datasets.

II. BACKGROUND AND RELATED WORK

Three of the best-known FIM algorithms are Apriori [1,
2], Eclat [3], and FP-Growth [4]. Apriori and Eclat
iteratively generate k+1-sized frequent item sets by joining
frequent k-sized item sets. This step is called candidate
generation. After generating each new set of candidates,
the algorithm scans the transaction database to count the
number of occurrences of each candidate. This step is
called support counting. The primary difference between
Apriori and Eclat is the way they represent candidate and
transaction data and the order that they scan the tree
structure that stores the candidates. FP-Growth is the most
recently-developed algorithm and operates much
differently. It executes two complete scans over the
transaction database to build up a frequent pattern tree, and
then generates frequent item sets by bottom-up traversal
and identifying sections of the tree that represent frequent
subsets. The main difference from the previous two
approaches is that FP-Growth doesn’t generate candidate
sets iteratively.

In general, much of the work in FIM algorithm
development were focused on serial algorithms, which is
likely due to the high degree of data dependence that is
fundamental to FIM methods. Single-threaded performance
comparisons generally show that the FP-Growth method is
generally faster than Apriori and Eclat, however, when
minimum support is high, Apriori outperforms FP-Growth
[5]. More importantly, however, is that Apriori contains
more easily exploitable task- and data-level parallelization
than GP-Growth, giving it potentially more scalability than
GP-Growth for parallel execution. In other words, while
GP-Growth may outperform Apriori on a single processor,
Apriori has more performance potential for multi- and
many-core platforms.

There has been much recent interest in implementing
FIM algorithms. Ferec Bodon implemented Apriori using
trie-based data structure and candidate hashing [6],
Christian Borgelt implemented Apriori in his work [7]
using recursion pruning, Bart Goethals implemented
Apriori based on Agrawal’s algorithm [2]. Comparison

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5 2011

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/CLUSTER.2011.61

585

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5 2011

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/CLUSTER.2011.61

590

between those implementations can be found in Bodon’s
work [6].

III. INTRODUCTION TO APRIORI ALGORITHM

Apriori-based frequent item mining algorithms are based
on the property that the subset of a frequent itemset must be
frequent, this property allows the algorithm to
incrementally build longer candidates from shorter ones. In
the algorithm, first we generate all 1-item candidates, test
their frequencies by scanning the transaction database, keep
those whose support ratio is larger than given threshold,
then join the 1-item candidates to generate 2-item
candidates and test the frequency of 2-items candidates.
This procedure will continue until there’s no frequent
candidate left in the new generation.

Apriori algorithm requires all current candidate sets to
be stored in memory, which can be expensive when the
candidate set is large. The trie data structure has been
developed to overcome the fast expanding of candidates.
The key idea is that the candidates from the kth generation
and k+1th generation share the same k-length prefix, thus
those candidates from different generations can be stored in
a hierarchical tree structure. New candidate generation can
be done by merging the leaf nodes and their siblings and
appending new leaves to the current leaf layer. Figure 1
shows an example of a candidate trie.

Figure 1 Example of trie representation

On the other hand, the method used to represent the
transactions is also an important aspect of FIM
implementation. The most straightforward way to store
transactions is to store a list of items that comprise each
transaction. This is called the horizontal representation.
An alternative approach is the vertical representation,
which instead stores a list of transaction ids that correspond
to each item. This approach is referred to as a “tidset”.
Each list can also be represented as a bitmask, which is
referred to as a “bitset”.Figure 2 shows a comparison of
vertical representation (tidset and bitset).

The vertical representation has been utilized by most of
the state-of-art Apriori algorithms. Experimental results
show that the vertical representation usually can speed up
the algorithm by one order of magnitude on most of the test
dataset.

When the candidates are represented as bitsets, new
candidates can be generated by joining leaf nodes with
siblings in the trie, and the support of the new candidate
can be computed by counting number of elements in its

vertical list. This method of candidate generation is called
Equivalent-Class Clustering, which is first devised by Zaki
et.al [8]. It speeds up candidate generation by avoiding the
slow O(n2) complete join.

Transactions ID

1,2,3,4,5 1
2,3,4,5,6 2
3,4,6,7 3
1,3,4,5,6 4

Candidate tidset bitset

1 1,4 1001
2 1,2 1100
3 1,2,3,4 1111
4 1,2,3,4 1111
5 1,2,4 1101
6 2,3,4 0111
7 3 0010
1,2 1 1000
1,3 1,4 1001
1,4 1,4 1001

(A) (B)

Figure 2 Comparison of horizontal representation (A) and vertical
representation of transactions (B), the differences of tidset and bitset are
also shown in (B)

IV. GPAPRIORI IMPLEMENTATION

In this section we describe GPApriori. The novelty of
our approach is includes a new trie and vertical transaction
list data structures and fine-grain parallelization of the
support counting algorithm.

1) Data structure orientation
Accelerating Apriori with a GPU involves careful

consideration of the vertical transaction list representation.
Tidsets are stored as linear ordered arrays, and when
traversing them during the support counting operation, the
resultant memory access pattern and instruction stream
branching behavior is unpredictable and leads to poor
performance on the GPU.

(a) Tidset join is uncoalesced (b) Bitset join is coalesced

Figure 3 A comparison between tidset join and bitset join, tidset join is not
continuous in memory access and may cause uncoalesced read on GPU

As shown in Figure 3, the tidset representation is
compact but join operations on tidsets are highly data
dependent and difficult to parallelize. On the other hand,
the bitset representation requires more memory space but it
is more suitable for designing a parallel set join operation,
which is better suited for GPU. Joining two bit-represented

586591

transaction lists can be performed by a “bitwise and”
operation between the two bit vectors.

2) Support counting
In Apriori, Support ratio is computed by scanning

transaction database to count the occurrences of the
candidates. This mainly involves considerable binary
searches and trie traversal, both of which will cause
irregular memory access when placing on GPU.

Our GPU Support counting is based on complete
intersection. In complete intersection, candidates are
copied from main memory to graphic memory by host code,
the GPU calculates their support ratio value by executing
bitwise intersections on their vertical transaction lists, and
the support value results are copied back to main memory.

Figure 4 shows how complete intersections are
computed. Only the vertical lists of first generation will be
saved in graphics memory, As shown in the example, the
fourth generation is {(1,2,4,5), (1,2,4,6), (1,2,5,6),…}, and
the supports are computed by intersecting (V1,V2,V4,V5),
(V1,V2,V4,V6) and (V1,V2,V5,V6). Compared to the
equivalent class clustering method, complete intersection
adds computational complexity in order to reduce memory
usage and memory operations. On a GPU, the cost of these
additional logic operations is lower than performing the
additional memory references required to transfer the
candidates from the host.

3) Support counting on CUDA
CUDA computation is organized into threads and

threads are organized into blocks. Each list intersection
will be computed by one block.

Figure 5 shows how support counting is computed on
one thread block. Threads within the same block will
process a word-length subset, the size of vertical lists are
aligned on the 64 byte boundary to ensure coalesced
memory access. The intersection result of each thread is
stored in a 32-bit integer, and the number of “1” bit in the
integer is counted by CUDA build-in popcount function
and stored in an integer array in shared (on-chip) memory.
A parallel summation reduction algorithm [9] is used to add
all the support values recursively into its first element .
The resultant support number for the candidate is written
back to graphic memory and then transferred back to main
memory.

Several optimization techniques which make the
algorithm be faster are (1) candidate preloading that is
executed at the beginning of the kernel execution in which
candidates will be preloaded to shared memory to prevent
repeating global memory read, manual, hand-tuned loop
unrolling to further improve the kernel speed; and (3)
hand-tuned block size.

1

2

4

Vertical list of item 1

Vertical list of item 2

Vertical list of item 3

5 6

Join

1

2

4

6

1

2

5

1

2

4

1

2

5

1

2

6

1

4

5

1

4

6

1

5

6

...

Vertical list of item 4

Vertical list of item 5

Vertical list of item 6

Join

Join

support

support

support

Generation 3

Generation 4

Figure 4 Complete intersection in support counting

Figure 5 Thread dispatching across computation block

V. EXPERIMENTAL RESULTS

In this section we will compare our GPU implementation
with various types of CPU Apriori algorithms.

A. Experimental environment
We performed our experiments using a Dell PowerEdge

R710 sever connected to a Tesla S1070 GPU server with
four Tesla T10 GPUs, although we currently use only one
GPU. Detailed information of tested implementation is
listed in Table 1.

Table 2 lists the detailed information about the datasets
used in the experiments. Our benchmark datasets are from
the Frequent Itemset Mining Repository [10] and include
one synthetic dataset file from IBM Almaden Quest
research group, T40I10D100K, two dataset files from UCI
dataset and PUMSB dataset: chess and pumsb, and one
dataset file from Karolien Geurts containing anonymized
traffic accident data: accidents.

587592

TABLE 1 TESTED FREQUENT ITEM MINING ALGORITHMS

Algorithm Platform
GPApriori Single thread GPU+ single

thread CPU
CPU_TEST Single thread CPU
Borgelt
Apriori

Single thread CPU

Bodon Apriori Single thread CPU
Gothel Apriori Single thread CPU

TABLE 2 EXPERIMENTAL DATASETS

Dataset #Item Avg.length #Trans Type
T40I10D100K 942 40 92,113 Synthetic
pumsb 2,113 74 49,046 Real
chess 75 37 3196 Real
accidents 468 34 340,183 Real

Figure 6 shows the detailed performance comparison.
Each of our performance results are listed as a speed up
relative to performance given by the Borgelt
implementation.Borgelt Apriori is one of the most recently
developed and state-of-the-art implementations of the
Apriori algorithm.

The comparison of GPApriori and CPU_TEST shows
the degree of acceleration our GPU implementation
achieves compared with equivalent CPU code. On the
smaller dataset chess, the GPU version can achieve a 10X
speed up, while on a the larger dataset accident, the speed
up ranges from 50X to 80X. In general, the performance
scales with the size of the dataset.

Figure 6 also shows the comparison between GPApriori
and the other three Apriori algorithms (Borgelt Apriori,
Bodon Apriori and Gothel Apriori). Both Bodon and
Borgelt utilize the vertical tidset while Gothel uses the
horizontal representation. We show only in 6(a) the
performance of Gothel algorithm because it performs very
slowly on the other three datasets.

Experimental results show that GPApriori outperforms
Borgelt Apriori on most of the moderate sized datasets with
4X-10X speed up and on a large dataset accident, the speed
up ratio can reach up to 80X.

Figure 6(a) Figure 6(b)

588593

Figure 6(c) Figure 6(d)

Figure 6 Time performance comparison of Apriori algorithms on selected datasets: T40I10D100K 6(a), pumsb 6(b), chess 6(c) and accident 6(d)

VI. CONCLUSION AND FUTURE WORK

We present a GPU parallel Apriori algorithm
(GPApriori), GPApriori utilizes trie-based candidate set,
vertical data layout and bit set representation of vertical
transaction lists. The support counting procedure is
optimized for GPU execution. The experimental results
show that compared with state-of-the-art single threaded
Apriori algorithm, the GPU version achieves one to two
order magnitude in speed up.

Future work on the research includes how to parallelize
other FIM algorithm such as FPGrowth and Eclat on GPU,
as well as devise a load-balanced computation model
across CPU/GPU platform and GPU cluster.

VII. REFERENCES

[1] R. Agrawal and H. Mannila, Fast Discovery of Association
Rules, in Advances in Knowledge Discovery and Data
Mining. 1996. p. 307-328.

[2] R. Agrawal and R. Srikant. Fast algorithm for mining
association rules. in VLDB 1994. p. 487-499

[3] M. J. Zaki and K. Gouda. Fast Vertical Mining Using
Diffsets. in Proc. SIGKDD. 2003. p. 326-335

[4] J. Han, H. Pei, and Y. Yin. Mining Frequent Patterns without
Candidate Generation. in SIGMOD. 2000. p. 1-12

[5] N. Govindaraju and M. Zaki, Advances in Frequent Itemset
Mining Implementations, in FIMI. 2003.

[6] F. Bodon, A Trie-based APRIORI Implementation for Mining
Frequent Item Sequences, in OSDM. 2005. p. 56-65.

[7] C. Borgelt. Efficient Implementations of Apriori and Eclat. in
Proc. FIMI. 2003.

[8] M. Zaki and S. Parthasarathy, New Algorithms for Fast
Discovery of Association Rules, in KDD. 1997. p. 283-296.

[9] NVidia. Data Parallel Algorithm in CUDA SDK Available
from: http://developer.download.nvidia.com.

[10] Frequent Itemset Mining Dataset Repository Available from:
http://fimi.ua.ac.be/data.

589594

