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Abstract—In this paper we describe GPApriori, a GPU-
accelerated implementation of Frequent Itemset Mining 
(FIM).  We tested our implementation with an Nvidia Tesla 
T10 graphic processor and demonstrate up to 100X speedup 
as compared with several state-of-the-art FIM algorithms on a 
CPU.  In order to map the Apriori algorithm onto the SIMD 
execution model, we have designed a “static bitset” memory 
structure to represent the input database.  This data structure 
improves upon the traditional approach of the vertical data 
layout in state-of-the art Apriori implementations.  In our 
implementation, we perform a parallelized version of the 
support counting step on the GPU.  Experimental results show 
that GPApriori consistently outperforms CPU-based Apriori 
implementations.  Our results demonstrate the potential for 
GPGPUs in speeding up data mining algorithms. 

Keywords: Association rule mining, Frequent itemset 
mining, CUDA GPU computing, Parallel Computing. 

I. INTRODUCTION 

Frequent Itemset Mining (FIM) algorithms are used for 
finding common and potentially interesting patterns in 
large-scale databases. In FIM algorithms, the data in the 
database are called transactions, each of which is a set of 
items labelled by a unique ID. The purpose of FIM is to 
find the most frequently-occurring subsets from the 
transactions. The frequency of the subset is measured by 
support ratio, which is the number of transactions 
containing the subset divided by the total number of 
transactions in the database.  FIM algorithms are given a 
minimum support ratio threshold, and returns all the 
frequent item sets with support ratio meeting the threshold. 

FIM is common in many research and commercial 
applications. An example can be shown in the sales data 
analysis of supermarkets. Customers usually purchase 
goods in a pattern (e.g. people who buy vegetables often 
also buy salad dressing), and those common shopping 
patterns can be discovered by mining receipts. Analysis of 
those patterns can be useful for designing the layout of the 
supermarket: products usually sold together can be placed 
near each other. FIM is also useful in database management 
systems, information retrieval, bioinformatics, data stream 
analysis, and computer vision. 

Our GPU implementation includes a set of fine-grained 
parallel data structures and algorithms design to achieve 
premising degree of speed up on modern GPU compared 

with state-of-the-art serial implementation. Experiment 
results show that our GPU implementation is more 
effective (over 100x speed up ) on large and dense datasets.   

II. BACKGROUND AND RELATED WORK

Three of the best-known FIM algorithms are Apriori [1, 
2], Eclat [3], and FP-Growth [4].  Apriori and Eclat 
iteratively generate k+1-sized frequent item sets by joining 
frequent k-sized item sets.  This step is called candidate 
generation.  After generating each new set of candidates, 
the algorithm scans the transaction database to count the 
number of occurrences of each candidate.  This step is 
called support counting. The primary difference between 
Apriori and Eclat is the way they represent candidate and 
transaction data and the order that they scan the tree 
structure that stores the candidates.  FP-Growth is the most 
recently-developed algorithm and operates much 
differently. It executes two complete scans over the 
transaction database to build up a frequent pattern tree, and 
then generates frequent item sets by bottom-up traversal 
and identifying sections of the tree that represent frequent 
subsets. The main difference from the previous two 
approaches is that FP-Growth doesn’t generate candidate 
sets iteratively. 

In general, much of the work in FIM algorithm 
development were focused on serial algorithms, which is 
likely due to the high degree of data dependence that is 
fundamental to FIM methods. Single-threaded performance 
comparisons generally show that the FP-Growth method is 
generally faster than Apriori and Eclat, however, when 
minimum support is high, Apriori outperforms FP-Growth 
[5].  More importantly, however, is that Apriori contains 
more easily exploitable task- and data-level parallelization 
than GP-Growth, giving it potentially more scalability than 
GP-Growth for parallel execution. In other words, while 
GP-Growth may outperform Apriori on a single processor, 
Apriori has more performance potential for multi- and 
many-core platforms.   

There has been much recent interest in implementing 
FIM algorithms. Ferec Bodon implemented Apriori using 
trie-based data structure and candidate hashing [6],  
Christian Borgelt implemented Apriori in his work [7] 
using recursion pruning, Bart Goethals implemented 
Apriori based on Agrawal’s algorithm [2]. Comparison 
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between those implementations can be found in Bodon’s 
work [6]. 

III. INTRODUCTION TO APRIORI ALGORITHM

Apriori-based frequent item mining algorithms are based 
on the property that the subset of a frequent itemset must be 
frequent, this property allows the algorithm to 
incrementally build longer candidates from shorter ones. In 
the algorithm, first we generate all 1-item candidates, test 
their frequencies by scanning the transaction database, keep 
those whose support ratio is larger than given threshold, 
then join the 1-item candidates to generate 2-item 
candidates and test the frequency of 2-items candidates. 
This procedure will continue until there’s no frequent 
candidate left in the new generation.  

Apriori algorithm requires all current candidate sets to 
be stored in memory, which can be expensive when the 
candidate set is large. The trie data structure has been 
developed to overcome the fast expanding of candidates.  
The key idea is that the candidates from the kth generation 
and k+1th generation share the same k-length prefix, thus 
those candidates from different generations can be stored in 
a hierarchical tree structure. New candidate generation can 
be done by merging the leaf nodes and their siblings and 
appending new leaves to the current leaf layer.  Figure 1 
shows an example of a candidate trie.  

Figure 1 Example of trie representation  

On the other hand, the method used to represent the 
transactions is also an important aspect of FIM 
implementation.  The most straightforward way to store 
transactions is to store a list of items that comprise each 
transaction.  This is called the horizontal representation.  
An alternative approach is the vertical representation, 
which instead stores a list of transaction ids that correspond 
to each item.  This approach is referred to as a “tidset”.  
Each list can also be represented as a bitmask, which is 
referred to as a “bitset”.Figure 2 shows a comparison of 
vertical representation (tidset and bitset).  

The vertical representation has been utilized by most of 
the state-of-art Apriori algorithms. Experimental results 
show that the vertical representation usually can speed up 
the algorithm by one order of magnitude on most of the test 
dataset. 

When the candidates are represented as bitsets, new 
candidates can be generated by joining leaf nodes with 
siblings in the trie, and the support of the new candidate 
can be computed by counting number of elements in its 

vertical list. This method of candidate generation is called 
Equivalent-Class Clustering, which is first devised by Zaki 
et.al [8]. It speeds up candidate generation by avoiding the 
slow O(n2) complete join. 

Transactions ID

1,2,3,4,5 1 
2,3,4,5,6 2 
3,4,6,7 3 
1,3,4,5,6 4 

Candidate tidset  bitset 

1 1,4 1001 
2 1,2 1100 
3 1,2,3,4 1111 
4 1,2,3,4 1111 
5 1,2,4 1101 
6 2,3,4 0111 
7 3 0010 
1,2 1 1000 
1,3 1,4 1001 
1,4 1,4 1001 

(A) (B)

Figure 2 Comparison of horizontal representation (A) and vertical 
representation of transactions (B), the differences of tidset and bitset are 
also shown in (B) 

IV. GPAPRIORI IMPLEMENTATION

In this section we describe GPApriori.  The novelty of 
our approach is includes a new trie and vertical transaction 
list data structures and fine-grain parallelization of the 
support counting algorithm. 

1)  Data structure orientation 
Accelerating Apriori with a GPU involves careful 

consideration of the vertical transaction list representation.  
Tidsets are stored as linear ordered arrays, and when 
traversing them during the support counting operation, the 
resultant memory access pattern and instruction stream 
branching behavior is unpredictable and leads to poor 
performance on the GPU. 

(a) Tidset join is uncoalesced (b) Bitset join is coalesced 

Figure 3 A comparison between tidset join and bitset join, tidset join is not 
continuous in memory access and may cause uncoalesced read on GPU 

As shown in Figure 3, the tidset representation is 
compact but join operations on tidsets are highly data 
dependent and difficult to parallelize.  On the other hand, 
the bitset representation requires more memory space but it 
is more suitable for designing a parallel set join operation, 
which is better suited for GPU.  Joining two bit-represented 
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transaction lists can be performed by a “bitwise and” 
operation between the two bit vectors. 

2)  Support counting 
In Apriori, Support ratio is computed by scanning 

transaction database to count the occurrences of the 
candidates. This mainly involves considerable binary 
searches and trie traversal, both of which will cause 
irregular memory access when placing on GPU.  

Our GPU Support counting is based on complete 
intersection.  In complete intersection, candidates are 
copied from main memory to graphic memory by host code, 
the GPU calculates their support ratio value by executing 
bitwise intersections on their vertical transaction lists, and 
the support value results are copied back to main memory.  

Figure 4 shows how complete intersections are 
computed. Only the vertical lists of first generation will be 
saved in graphics memory,  As shown in the example, the 
fourth generation is {(1,2,4,5), (1,2,4,6), (1,2,5,6),…}, and 
the supports are computed by intersecting (V1,V2,V4,V5), 
(V1,V2,V4,V6) and (V1,V2,V5,V6).  Compared to the 
equivalent class clustering method, complete intersection 
adds computational complexity in order to reduce memory 
usage and memory operations.  On a GPU, the cost of these 
additional logic operations is lower than performing the 
additional memory references required to transfer the 
candidates from the host. 

3)  Support counting on CUDA 
CUDA computation is organized into threads and 

threads are organized into blocks.  Each list intersection 
will be computed by one block. 

Figure 5 shows how support counting is computed on 
one thread block.  Threads within the same block will 
process a word-length subset, the size of vertical lists are 
aligned on the 64 byte boundary to ensure coalesced 
memory access.  The intersection result of each thread is 
stored in a 32-bit integer, and the number of “1” bit in the 
integer is counted by CUDA build-in popcount function 
and stored in an integer array in shared (on-chip) memory.  
A parallel summation reduction algorithm [9] is used to add 
all the support values recursively into its first element .  
The resultant support number for the candidate is written 
back to graphic memory and then transferred back to main 
memory.  

Several optimization techniques which make the 
algorithm be faster are (1) candidate preloading that is 
executed at the beginning of the kernel execution in which 
candidates will be preloaded to shared memory to prevent 
repeating global memory read, manual, hand-tuned loop 
unrolling  to further improve the kernel speed; and (3) 
hand-tuned block size.

1

2

4

Vertical list of item 1

Vertical list of item 2

Vertical list of item 3

5 6

Join

1

2

4

6

1

2

5

1

2

4

1

2

5

1

2

6

1

4

5

1

4

6

1

5

6

...

Vertical list of item 4

Vertical list of item 5

Vertical list of item 6

Join

Join

support

support

support

Generation 3

Generation 4

Figure 4 Complete intersection in support counting  

Figure 5 Thread dispatching across computation block  

V. EXPERIMENTAL RESULTS

In this section we will compare our GPU implementation 
with various types of CPU Apriori algorithms. 

A.  Experimental environment 
We performed our experiments using a Dell PowerEdge 

R710 sever connected to a Tesla S1070 GPU server with 
four Tesla T10 GPUs, although we currently use only one 
GPU.  Detailed information of tested implementation is 
listed in Table 1.  

Table 2 lists the detailed information about the datasets 
used in the experiments.  Our benchmark datasets are from 
the Frequent Itemset Mining Repository [10] and include 
one synthetic dataset file from IBM Almaden Quest 
research group, T40I10D100K, two dataset files from UCI 
dataset and PUMSB dataset: chess and pumsb, and one 
dataset file from Karolien Geurts containing anonymized 
traffic accident data: accidents.  
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TABLE 1 TESTED FREQUENT ITEM MINING ALGORITHMS

Algorithm Platform 
GPApriori Single thread GPU+ single 

thread CPU 
CPU_TEST Single thread CPU 
Borgelt 
Apriori 

Single thread CPU 

Bodon Apriori Single thread CPU 
Gothel Apriori Single thread CPU 

TABLE 2 EXPERIMENTAL DATASETS

Dataset #Item Avg.length #Trans Type 
T40I10D100K 942 40 92,113 Synthetic 
pumsb 2,113 74 49,046 Real 
chess 75 37 3196 Real 
accidents 468 34 340,183 Real 

Figure 6 shows the detailed performance comparison. 
Each of our performance results are listed as a speed up 
relative to performance given by the Borgelt 
implementation.Borgelt Apriori is one of the most recently 
developed and state-of-the-art implementations of the 
Apriori algorithm.   

The comparison of GPApriori and CPU_TEST shows 
the degree of acceleration our GPU implementation 
achieves compared with equivalent CPU code.  On the 
smaller dataset chess, the GPU version can achieve a 10X 
speed up, while on a the larger dataset accident, the speed 
up ranges from 50X to 80X.  In general, the performance 
scales with the size of the dataset. 

Figure 6 also shows the comparison between GPApriori 
and the other three Apriori algorithms (Borgelt Apriori, 
Bodon Apriori and Gothel Apriori).  Both Bodon and 
Borgelt utilize the vertical tidset while Gothel uses the 
horizontal representation.  We show only in 6(a) the 
performance of Gothel algorithm because it performs very 
slowly on the other three datasets. 

Experimental results show that GPApriori outperforms 
Borgelt Apriori on most of the moderate sized datasets with 
4X-10X speed up and on a large dataset accident, the speed 
up ratio can reach up to 80X.  

Figure 6(a) Figure 6(b) 
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Figure 6(c) Figure 6(d) 

Figure 6  Time performance comparison of Apriori algorithms on selected datasets: T40I10D100K  6(a), pumsb 6(b), chess 6(c) and accident 6(d) 

VI. CONCLUSION AND FUTURE WORK

We present a GPU parallel Apriori algorithm 
(GPApriori), GPApriori utilizes trie-based candidate set, 
vertical data layout and bit set representation of vertical 
transaction lists.  The support counting procedure is 
optimized for GPU execution. The experimental results 
show that compared with state-of-the-art single threaded 
Apriori algorithm, the GPU version achieves one to two 
order magnitude in speed up. 

Future work on the research includes how to parallelize 
other FIM algorithm such as FPGrowth and Eclat on GPU, 
as well as devise a load-balanced computation model 
across CPU/GPU platform and GPU cluster. 
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