
Control System Communication Architecture for
Power Electronic Building Blocks

Ivan Panchenko

Department of Computer Science
and Engineering

Univ. of South Carolina
panchenk@email.sc.edu

Jason D. Bakos
Department of Computer Science

and Engineering
Univ. of South Carolina

jbakos@cse.sc.edu

Herbert L. Ginn III
Department of Electrical

Engineering
Univ. of South Carolina

ginnhl@cec.sc.edu

Abstract—Recent developments in SiC power devices have
enabled the development of Power Electronic Building Blocks
(PEBBs) having greater switching frequencies than Si-based
devices such as IGBTs, but also require shorter time scales in their
corresponding control systems. At the same time, system designers
are scaling up modularized converter systems, such as the
Modular Multilevel Converter, which can now comprise hundreds
of PEBBs. Both of those trends present the need to evaluate
architectural tradeoffs and communication requirements for
hardware realizations of the Universal Controller Architecture.
The control network should be designed to have minimal round-
trip latency and maximal scalability. In this paper we present the
results of a study to determine the most appropriate
communication architecture and routing for networked PEBB
control systems.

Keywords—power electronics; FPGA; field programmable gate
array; control systems; direct network; multi-hop network

I. INTRODUCTION
Present trends indicate that shipboard energy management

systems will contain an increasing number of power electronic
devices. In order to effectively explore the design space, system
designers require an open and hierarchical power electronics
system architecture with standardized modules and control
interfaces. There has been progress in this area due to continued
research and development of the power electronics building
blocks concept [1-3]. However, there are many different control
architectures for power electronics systems. In order to address
the issue of custom control systems for each design, recent work
[4,5] has presented the concept of the universal control
architecture (UCA) in an attempt to standardize the control
interfaces.

When a converter control system is partitioned, the partition
interface should meet performance requirements of different
control hierarchy layers, including requirements on data volume
and transmission rates. Moreover, the interface should enable
layer modularity such that replacement of any layer should not
induce modifications in other layers. Beyond the need for
modularity within individual converters, as shown in Figure 1,
communication among application layer control modules forms
the basis of a coordinating system control that allows for system
wide energy management strategies [6]. The need for both
increased switching frequency and greater modularity require

the ability to evaluate architectural tradeoffs and communication
requirements for hardware realizations of the Universal
Controller Architecture.

The stability and performance of the system of PEBB
modules is affected by the delay between when measurements
are taken and when updated references are received from the
controller. Since each level of the PEBB control hierarchy is
connected in a local topology, transitioning packets between
control levels will also contribute to the delay. In the paper we
present a new FPGA-based UCA along with a proposed
communication network topology. We then characterize the
impact of the communication topology on latency as the system
size is scaled.

II. CONTROLLER NETWORK TOPOLOGY AND ROUTING
In a ship-wide PEBB-based power distribution system,

control and measurement modules are spatially distributed.
While modules that form the control system for a single
converter may be somewhat co-located, modules at the
application level of control and above will be distributed
throughout the overall system. Therefore, it is generally not
feasible to connect them all directly into a single central
controller. Instead, it is more practical to distribute control
among the modules within converters and at layers above
individual converter control, such as zonal or bus level controls.
Using a multi-hop network, each control module contains a
small integrated router that can both serve as a network interface
and serve as an intermediate forwarding point for other
messages sent among other control modules. In these types of
networks, the worst-case message latency is determined by the
longest possible path between two control modules. This worst-
case latency serves as a constraint for the overall control system
design. As such, both the physical topology of the
communication network and the routing algorithm are important
considerations for the system design.

Figure 2 shows a simple 1D bidirectional ring topology,
where there is only one minimal-distance path between any two
endpoints. The worst case round trip path delay is n, where n =
the number of nodes (where a message must traverse n/2 rings
in both directions). In this toplogy, each module requires only
two bidirectional channels.

Figure 3 shows a 2D torus topology, which offers more than
one possible minimum-length paths between any two endpoints
that are not horizontally or vertically aligned. The 2D torus has
a worst-case round trip latency of √nand requires four

This material is based upon research supported by the U.S. Office of Naval
Research under award number N00014-15-1-2346.

mailto:panchenk@email.sc.edu
mailto:jbakos@cse.sc.edu
mailto:ginnhl@cec.sc.edu

bidirectional channels per node.. Extending further, a 3D torus
would require six channel per node and have a worst-case round-
trip latency of n1/3. We selected a 2D torus as the best
compromise between hardware cost and performance.

A. Multi-Hop Network Topology
In 2D topologies, the existence of multiple minimum-length

paths between most endpoint pairs requires additional
considerations in order to maximize the utilization of the
network’s aggregate channel capacity. In a 2D torus of width w
and height h, a message sent between nodes having addresses
(x1, y1) and (x2, y2) has the following offsets in both dimensions:

Δ𝑥𝑥 = min ��(𝑥𝑥1 − 𝑥𝑥2) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤�, �(𝑥𝑥2 − 𝑥𝑥1) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤�� (1)

Δ𝑦𝑦 = min ��(𝑦𝑦1 − 𝑦𝑦2) 𝑚𝑚𝑚𝑚𝑚𝑚 ℎ�, �(𝑦𝑦2 − 𝑦𝑦1) 𝑚𝑚𝑚𝑚𝑚𝑚 ℎ�� (2)

The required single path routing distance is Δ𝑥𝑥 + Δ𝑦𝑦 hops but
there are

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = (Δ𝑥𝑥+Δ𝑦𝑦)!
Δ𝑥𝑥!Δ𝑦𝑦!

 (3)

possible minimum-length paths.

In this paper we assume that a single node serves as an
egress/ingress point to the higher-level control layer. In this
way, all nodes transmit and receive measurement and control
data to/from this node, and the resulting control loop imposes
real-time performance constraints on the network and the on-
chip routers.

In order to estimate the minimum round trip latency for
various network sizes, we developed an analytical model based
on the example assumed system parameters shown in Table 1.
Assuming that the chosen parameter values do not exceed the
maximum bandwidth of any single channel, each packet will
experience a round-trip latency

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟 = 2 ∙ �𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙𝑚𝑚𝑙𝑙𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙𝑚𝑚𝑙𝑙𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟𝑙𝑙𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴

+
𝑠𝑠𝑚𝑚𝑠𝑠𝑙𝑙𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟∙8

𝑏𝑏𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
� ∙ �1

2
𝑤𝑤 + 1

2
ℎ� (4)

Fig. 1. Portion of a notional shipboard power system with communication among converters’ control systems.

Fig. 2: Ring topology, 2 channels/node, worst case latency = n/2.

Fig. 3: Torus topology, 4 channels/node, worst case latency = √n/2.

Table 2 shows minimum round trip latencies for the
parameter values shown in Table 1.

B. Routing Algorithms
As shown in Figure 4, the simplest routing scheme for multi-

hop networks is X-Y (also called dimension-ordered) routing, in
which the network routes packets in the X dimension until the
packet reaches a node that is vertically aligned to the destination
and then routes in the Y dimension [7]. X-Y routing is simple
to implement and is guaranteed to follow minimal length routes.

For the traffic pattern for PEBB control networks, where all
nodes periodically send one packet and receive one packet from
the ingress/egress node, the north and south channels into the
ingress/egress node must carry more traffic than the east and
west channels. In this case, both the north and south channels
will experience 𝑏𝑏∙ℎ−𝑏𝑏

2
 packet traversals while the east and west

channels will experience only 𝑏𝑏
2

 packet traversals. The east-
west channels will require a maximum channel utilization equal
to

𝑏𝑏𝑤𝑤𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚𝑠𝑠𝑙𝑙𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 =
𝑠𝑠𝑚𝑚𝑠𝑠𝑙𝑙𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟∙8∙

𝑤𝑤∙ℎ−𝑤𝑤
2

𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙𝑚𝑚𝑙𝑙𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝐴𝐴𝑟𝑟𝑝𝑝
 (5)

In order to avoid this load imbalance, the routing algorithm
should equally distribute the network traffic across the channels
along the minimum paths, especially around the highest
congested areas around the ingress/egress node. Ideally, each of
the four of the ingress/egress node’s channels should experience
𝑏𝑏∙ℎ
4

 packet traversals. To achieve this we propose “hub routing”,
comprised of a set of pre-computed static routes between each
node and the ingress/egress node, where each packet follows a
path that keeps its location on the grid closest to the straight line
between the node and the ingress/egress node.

TABLE 1: DESIGN PARAMETERS

Parameter Variable Expected value
Maximum latency of the
Aurora links

latencyAurora 53 clock cycles

Packet size sizepacket 100 bytes
Routing latency latencyroute 1 clock cycle
Link bandwidth bwAurora 10 Gb/s
FPGA user clock frequency freqFPGA 156.25 MHz
Network size n 100 nodes
Network order, n = o2 o 10 nodes

TABLE 2: MINIMUM ROUND TRIP LATENCIES.

Network size Round trip latency
5x5 4.3 us

10x10 8.5 us
20x20 17.0 us
30x30 25.6 us
40x40 34.1 us
50x50 42.6 us

We compute the distance between a given node at location
(x0,y0) and a straight line (ax + by + c = 0) in the traditional way,
i.e. |𝑙𝑙𝑥𝑥0+𝑏𝑏𝑦𝑦0+𝑙𝑙|

�𝑙𝑙2+𝑏𝑏2
. Each node’s integrated router can implemented

hub routing through the use of a small, pre-computed static
routing table comprised a 𝑏𝑏∙ℎ

4
 × 3-bit memory.

Figure 5 shows an example path computed with hub-based
routing, where each packet follows a path that keeps its location
on the grid closest to the straight line between the node and the
ingress/egress node. Thus the maximum-loaded channels will
require a maximum channel utilization equal to

𝑏𝑏𝑤𝑤𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚𝑠𝑠𝑙𝑙𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 =
𝑠𝑠𝑚𝑚𝑠𝑠𝑙𝑙𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟∙8∙

𝑤𝑤∙ℎ
4

𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙𝑚𝑚𝑙𝑙𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝐴𝐴𝑟𝑟𝑝𝑝
 (6)

Table 3 compares the minimum channel bandwidth

utilization for both X-Y and Hub Routing, assuming the
parameters given in Table 1. X-Y routing requires more than
the available 10 Gb/s bandwidth when scaling the network to
30x30, while the Hub routing supports network sizes up to
40x40.

TABLE 3: MINIMUM LINK BANDWIDTH

Network size 𝒃𝒃𝒃𝒃𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 (Gb/s): XY 𝒃𝒃𝒃𝒃𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 (Gb/s): Hub
5x5 1.9 1.2

10x10 4.2 2.3
20x20 8.9 4.7
30x30 13.6 7.0
40x40 18.3 9.4
50x50 23.0 11.7

C. Related Work
Much of the current work in routing and topologies for

multi-hop networks on FPGAs focus on networks-on-chip
where a single FPGA contains all the routers comprising the
network. In this case the router must be as compact as possible
[8,9]. These networks typically use non-minimal deflection-
routing to avoid the need for buffers in the router. Deflection
routing allows packets to follow non-minimal routes when the
outgoing ports on the minimal path(s) are currently occupied
with other traffic, as opposed to buffering in the router. Because
deflection routing increases latency and timing uncertainty it is
not appropriate for our application. Well-known algorithms
developed for distributed computing also generally employ non-
minimal routing to maximize throughput, often at the cost of
latency [10]. These networks are also generally designed for
dynamic traffic patterns, as opposed to the static patterns
assumed for controller networks. Work that focuses on multi-
FPGA systems often focus on exploration of network topologies
and not specific routing algorithms, and often do not explicitly
consider the overheads contributed by the on-chip processors
that interact with the network [11,12].

III. EXPERIMENTAL PLATFORM
To explore the feasibility for a PEBB control network, we

used an off-the-shelf KC705 FPGA board with an attached

quad-SPF+ transceiver FPGA mezzanine connector (FMC)
module.

The KC705 has a relatively small Xilinx Kintex-7 FPGA
with 203K logic slices and 2 MB of on chip RAM. The board
can connect directly to PEBB hardware managers or other
PEBB control level interfaces via a secondary FMC expansion
connector. The FPGA boards are themselves interconnected via
four optical channels to form a control network to form a closed
loop control network among the boards. The boards also
connect to a secondary, non-real time network through 1 Gb
Ethernet for monitoring and control.

The design programmed onto the FPGA is structured as a
system-on-chip (SoC), consisting of two Microblaze soft core
microcontrollers, on-chip memories, and DMA engines
connected to the four bidirectional 10 Gb/s channels using the
Xilinx 66b64b Aurora link-layer protocol.

A. Platform Design Considerations
Each PEBB control module collects off-board

measurements from the attached power electronics and encodes
and transmits the measurements and control data over the multi-

hop control network to other control nodes either within the
same control hierarchy layer or across a layer boundary as
dictated by the control loops in operation. Each node will later
receive a corresponding control message from other nodes or
layers. Since each operating control loop is deterministic, each
control node must complete these tasks according to a fixed
control period. In addition, the control system must also route
messages on behalf of PEBB control modules on their path to or
from other locations in the control network as needed.

The control system is constrained by the communication
latency imposed both by the network (in terms of worst-case
path length) but also the on-chip overheads of processing and
forwarding packets, which may be significant since we are using
relatively low-speed microcontrollers. Longer worst case delays
will constrain the minimum control period for a given control
layer.

Likewise, as described in Section IIB, the effective channel
bandwidth limits the maximum size/scale of the network, since
larger networks have more overlapping routing paths requiring
more channel bandwidth. Like other network technologies, the
effective bandwidth is dependent on the packet size. Although
Xilinx’s Direct Memory Access (DMA) IP modules allow the
programmer to specify an interrupt threshold that defines the
number of received packets before the module triggers an
interrupt, our current implementation issues an interrupt after
each received packet. In this model, packets comprised of fewer
bytes will require a higher interrupt rate to achieve higher
utilization of the 10 Gbps channel.

Table 4 shows the required interrupt rate and the
corresponding number of cycles allowed for the packet handler
to utilize all channel bandwidth, assuming an interrupt threshold
of one. A packet size of 32 would require 42 million interrupts
per second, leaving only 2 cycles per interrupt using a 100 MHz
clock, which is obviously impractical. As shown, it is only
feasible with 2 KB packets and above to achieve a substantial
level of channel utilization. We confirm these results
experimentally later in this section. In future work we will we
explore the impact of adjusting the interrupt threshold to allow
multiple in-flight packets.

TABLE 4: REQUIRED PROCESSOR WORKLOAD TO ACHIEVE MAXIMUM
THEORETICAL CHANNEL BANDWIDTH.

Packet size (bytes)

Interrupt rate to
saturate 10 Gbps

channel
(interrupts per sec)

Maximum # clock
cycles permitted for

handler code
(@100 MHz)

32 42 M 2
64 21 M 4
512 2.6 M 38

2 KB 655 K 152
4 KB 328 K 305
8 KB 163 K 610

Figure 6 shows a block diagram of the design we
programmed into the FPGA. The design is logically split into
two subsystems mastered by a separate Microblaze
microntroller: the controller subsystem and the monitor
subsystem. The two subsystems are isolated and share only one
common peripheral, an on-chip BRAM that holds the controller

Fig. 4: X-Y Routing.

Fig. 5: Hub-based routing.

state. Both processors have local on-chip memory from which
they execute their respective program code, both processors
have independent interrupt controllers, and both processors have
independent timers (the monitor processor uses its timer for the
TCP/IP stack). The TCP/IP stack stores its data on off-chip
DRAM.

B. Controller Subsystem
The controller subsystem performs the control and routing

tasks on behalf of the module and is optimized for latency and
determinism. To minimize the amount of unpredictable delays,
we took the following steps: (1) store the microcontrollers’s
software and data in on-chip memory, as opposed to off-chip
memory, which has substantially higher latency, (2) limit the set
of interrupts to only the four DMA interrupts corresponding to
the four DMA modules connected to the Aurora interfaces
(which only interrupt the processor when a packet arrives from
any of the Aurora interfaces) and a timer interrupt (which
interrupts the processor when it is time to collect measurements
and transmit a message to the zone controller), and (3) place the
interrupt controller in fast mode, in which the interrupt controller
passes the handler address directly to the processor without any
software intervention.

C. Monitoring Subsystem
We use a non-real time 1 Gb/s Ethernet interface for

monitoring and control of the module. The Ethernet subsystem
runs as a fully-custom hardware IP module in the FPGA logic
fabric but its TCP/IP stack runs in software. The TCP/IP stack
is heavyweight and imposes unpredictable loads on the

microcontroller, but when running on its own microcontroller it
cannot interfere with the control subsystem.

IV. EXPERIMENTAL RESULTS
In this section we describe characterization results of our

evaluation platform.

A. Latency
In order to evaluate the internal latency of controller

subsystem, we set up an experiment with a single board having
a loopback cable from channel 0 to channel 1. The software
would transmit one packet every control period, and the DMA
interrupt handler measured the round-trip delay. This
measurement includes the latency contributions from the
transmitting DMA engine, the transmitting Aurora interface, the
optical transmission latency, the receiving Aurora interface, the
receiving DMA engine, and the interrupt controller. These
values represent the effective channel latency for one hop.

Figures 7 shows the distribution of packet latencies over 1
million packet transmissions for a 32-byte packet and a 4 KB
packet. Note that the Y-axis of the histograms is plotted on a
logarithmic scale. For the 32-byte packet, 18.3% of the packets
experienced 1150 to 1200 cycles of latency and 81.6% of the
packets experienced 1200 to 1250 cycles of latency.

On the Microblaze’s 100 MHz clock, 1200 cycles equivalent
to 12 us, while the transmission time of a 32 byte packet on a 10

Fig. 6: Top-level Design.

Gb/s channel is 25.6 ns (note that our clock rate is less than the
example parameters listed in Table 1).

For the 4 KB packet, 99.9% of the packets experienced 1250
to 1300 cycles of latency, against a 3.2 us expected transmission
time. The ~100-cycle latency difference between the 32-byte
and 4 KB packet size is equivalent to approximately 1 us, caused
by the higher transmission time for the larger packet.

These results indicate that the packet size has little relative
effect on the end-to-end transmission latency, since a 128X
increase in packet size required only a 5 to 10% increase in
latency. Note that because the platform overheads are 3.9X to
468X that of the channel transmission time.

B. Bandwidth
To evaluate the effective channel bandwidth, we added a

transmit command to the DMA handler that causes the software
to transmit a new packet immediately after receiving a packet.
We used a 2000-cycle timer interrupt to gather statistics.

Figure 8 plots the effective bandwidth of the channel, in
Megabits per second, versus the packet size. The 32-byte packet
size uses 38 Mbps of the channel capacity, the 512-byte packet
size uses 614 Mbps, the 4 KB-packet size uses 3.2 Gbps, and the
8 KB-packet size uses 6.5 Gbps.

These results are consistent with the extrapolated results
shown in Table 4, which shows there is insufficient time to
process smaller packets and allow the processor to achieve full
channel utilization. Our observed bandwidth is even lower than
Table 4 suggests, since the processor must also periodically call
the timer interrupt handler, which calculates and records
performance statistics. In this test we lose additional
performance because we only allow for up to one in-flight
packet. In future work we will incorporate more descriptor-
based DMA and/or flow control to allow for multiple
simultaneous in-flight packets to improve effective bandwidth
for smaller packet sizes.

Fig. 8: Observed Aurora channel bandwidth versus packet size.

V. CONCLUSIONS AND FUTURE WORK
This paper describes a general methodology for building

power electronic building blocks (PEBBs) based converters and
systems of converters, where individual PEBB modules are
coupled with embedded controllers interconnected on a
distributed multi-hop communication network. We advocate the
use of FPGA-based base boards, where the FPGA serves as a
substrate for embedded microcontrollers executing software that
performs the control, routing, and monitoring functions.

We evaluated two routing algorithms and used an analytical
performance model to evaluate the impact of load balancing on
system scale. Our proposed hub-based routing algorithm is
capable of balancing channel load for a static traffic pattern
where all modules engage in a closed control loop with a single
ingress/egress point to other control layers.

Our proposed FPGA design is decomposed into two mostly
isolated subsystems. One of these systems is designed for real-
time control and control network routing and the other for non-
real time instrumentation and monitoring. We characterized the
network performance of the 10 Gbps communication
infrastructure, and showed that larger packets, or possibly higher
interrupt thresholds, are needed to achieve high channel
utilization., Moreover, the interrupt handling capabilities of the
softcore microcontrollers adds significant latency overhead,
possibly necessitating hardware acceleration for packet
forwarding.

In future work we plan to develop hardware-based routers to
lessen the impact of processor overhead on packet latency, and
enable scatter-gather DMA mode to allow for multiple-inflight

Fig. 7: Observed packet transmit latency for 32 byte packets (top) and 4
Kilobyte packets (bottom). These results include packet transmission
time over the 10 Gbps link (~3 cycles for a 32 byte packet and ~328
cycles for a 4KB packet) and the platform overheads, such as those
contributed by the on-chip interconnect, DMA engines, interript
controller, and driver software. Note that the Y-axis is logarithmic.

packets between interrupts in order to lessen the impact of
processing overhead.

ACKNOWLEDGMENT
This work was supported by the Office of Naval Research

under contract N00014-15-1-2346.

REFERENCES
[1] T. Ericsen, “Power Electronics Building Blocks – a Systematic Approach

to Power Electronics,” Proceeding of the 2000 IEEE Power Engineering
Society Summer Meeting, Volume: 2, 16-20, July 2000, pp. 1216-1218.

[2] F. Wang, S. Rosado, D. Boroyevich, “Open Modular Power Electronics
Building Blocks for Utility Power System Controller Applications,”
Proceedings of IEEE 34th Power Electronics Specialist Conference, Vol.
4, 15-19, June 2003, pp. 1792-1797.

[3] T. Ericsen, “SiC-PEBB based zonal distribution system architectue,”
Ericsen Innovations, May 2013.

[4] IEEE Std. 1676-2010, “Guide for Control Architecture for High Power
Electronics (1 MW and Greater) Used in Electric Power Transmission and
Distribution Systems”, 11 Feb. 2011.

[5] Hingorani, N., Ginn, H, Sullivan, J., "Control/protection architecture for
power electronic converters", Proceedings of Electric Ship Technologies
Symposium (ESTS), 2011 IEEE , pp. 472 – 477.

[6] M.R. Hossain and H.L. Ginn III, “Real-Time Distriubed Coordination of
Power Electronic Converters in a DC Shipboard Distribution System,”
IEEE Trans. On Energy Conversion, Vol. 32, No. 2, June 2017, pp. 770-
778.

[7] W. Dally and B. Towles. Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003.

[8] N. Kapre and J. Gray, "Hoplite: Building austere overlay NoCs for
FPGAs," Proc. 25th International Conference on Field Programmable
Logic and Applications (FPL).

[9] Nachiket Kapre, "Implementing FPGA Overlay NoCs Using the Xilinx
UltraScale Memory Cascades," Proc. 25th IEEE International
Symposium on Field-Programmable Custom Computing Machines, 2017.

[10] Arjun Singh, William J. Dally, Amit K. Gupta, Brian Towles, "GOAL: a
load-balanced adaptive routing algorithm for torus networks,"
Proceedings of the 30th annual international symposium on Computer
architecture 2003.

[11] Trevor Bunker, Steven Swanson, "Latency-Optimized Networks for
Clustering FPGAs," Proc. 21st Annual International IEEE Symposium on
Field-Programmable Custom Computing Machines, 2013.

[12] Andrew G. Schmidt, William V. Kritikos, Rahul R. Sharma, Ron Sass,
"AIREN: A Novel Integration of On-Chip and Off-Chip FPGA
Networks," Proc. 17th IEEE Symposium on Field Programmable Custom
Computing Machines, 2009.

	I. Introduction
	II. Controller Network Topology and Routing
	A. Multi-Hop Network Topology
	B. Routing Algorithms
	C. Related Work

	III. Experimental Platform
	A. Platform Design Considerations
	B. Controller Subsystem
	C. Monitoring Subsystem

	IV. Experimental Results
	A. Latency
	B. Bandwidth

	V. Conclusions and Future Work
	Acknowledgment
	References

