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Abstract—Recent developments in SiC power devices have 
enabled the development of Power Electronic Building Blocks 
(PEBBs) having greater switching frequencies than Si-based 
devices such as IGBTs, but also require shorter time scales in their 
corresponding control systems. At the same time, system designers 
are scaling up modularized converter systems, such as the 
Modular Multilevel Converter, which can now comprise hundreds 
of PEBBs. Both of those trends present the need to evaluate 
architectural tradeoffs and communication requirements for 
hardware realizations of the Universal Controller Architecture. 
The control network should be designed to have minimal round-
trip latency and maximal scalability. In this paper we present the 
results of a study to determine the most appropriate 
communication architecture and routing for networked PEBB 
control systems. 

Keywords—power electronics; FPGA; field programmable gate 
array; control systems; direct network; multi-hop network 

I. INTRODUCTION 
Present trends indicate that shipboard energy management 

systems will contain an increasing number of power electronic 
devices. In order to effectively explore the design space, system 
designers require an open and hierarchical power electronics 
system architecture with standardized modules and control 
interfaces. There has been progress in this area due to continued 
research and development of the power electronics building 
blocks concept [1-3]. However, there are many different control 
architectures for power electronics systems. In order to address 
the issue of custom control systems for each design, recent work 
[4,5] has presented the concept of the universal control 
architecture (UCA) in an attempt to standardize the control 
interfaces. 

When a converter control system is partitioned, the partition 
interface should meet performance requirements of different 
control hierarchy layers, including requirements on data volume 
and transmission rates. Moreover, the interface should enable 
layer modularity such that replacement of any layer should not 
induce modifications in other layers.  Beyond the need for 
modularity within individual converters, as shown in Figure 1, 
communication among application layer control modules forms 
the basis of a coordinating system control that allows for system 
wide energy management strategies [6]. The need for both 
increased switching frequency and greater modularity require 

the ability to evaluate architectural tradeoffs and communication 
requirements for hardware realizations of the Universal 
Controller Architecture. 

The stability and performance of the system of PEBB 
modules is affected by the delay between when measurements 
are taken and when updated references are received from the 
controller.  Since each level of the PEBB control hierarchy is 
connected in a local topology, transitioning packets between 
control levels will also contribute to the delay.  In the paper we 
present a new FPGA-based UCA along with a proposed 
communication network topology. We then characterize the 
impact of the communication topology on latency as the system 
size is scaled. 

II. CONTROLLER NETWORK TOPOLOGY AND ROUTING 
In a ship-wide PEBB-based power distribution system, 

control and measurement modules are spatially distributed.  
While modules that form the control system for a single 
converter may be somewhat co-located, modules at the 
application level of control and above will be distributed 
throughout the overall system. Therefore, it is generally not 
feasible to connect them all directly into a single central 
controller. Instead, it is more practical to distribute control 
among the modules within converters and at layers above 
individual converter control, such as zonal or bus level controls. 
Using a multi-hop network, each control module contains a 
small integrated router that can both serve as a network interface 
and serve as an intermediate forwarding point for other 
messages sent among other control modules.  In these types of 
networks, the worst-case message latency is determined by the 
longest possible path between two control modules.  This worst-
case latency serves as a constraint for the overall control system 
design.  As such, both the physical topology of the 
communication network and the routing algorithm are important 
considerations for the system design. 

Figure 2 shows a simple 1D bidirectional ring topology, 
where there is only one minimal-distance path between any two 
endpoints.  The worst case round trip path delay is n, where n = 
the number of nodes (where a message must traverse n/2 rings 
in both directions).  In this toplogy, each module requires only 
two bidirectional channels. 

Figure 3 shows a 2D torus topology, which offers more than 
one possible minimum-length paths between any two endpoints 
that are not horizontally or vertically aligned.  The 2D torus has 
a worst-case round trip latency of √nand requires four 

This material is based upon research supported by the U.S. Office of Naval 
Research under award number N00014-15-1-2346. 

mailto:panchenk@email.sc.edu
mailto:jbakos@cse.sc.edu
mailto:ginnhl@cec.sc.edu


bidirectional channels per node..  Extending further, a 3D torus 
would require six channel per node and have a worst-case round-
trip latency of n1/3. We selected a 2D torus as the best 
compromise between hardware cost and performance. 

A. Multi-Hop Network Topology 
In 2D topologies, the existence of multiple minimum-length 

paths between most endpoint pairs requires additional 
considerations in order to maximize the utilization of the 
network’s aggregate channel capacity.  In a 2D torus of width w 
and height h, a message sent between nodes having addresses 
(x1, y1) and (x2, y2) has the following offsets in both dimensions: 

Δ𝑥𝑥 = min ��(𝑥𝑥1 − 𝑥𝑥2) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤�, �(𝑥𝑥2 − 𝑥𝑥1) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤��  (1) 

Δ𝑦𝑦 = min ��(𝑦𝑦1 − 𝑦𝑦2) 𝑚𝑚𝑚𝑚𝑚𝑚 ℎ�, �(𝑦𝑦2 − 𝑦𝑦1) 𝑚𝑚𝑚𝑚𝑚𝑚 ℎ��   (2) 

The required single path routing distance is Δ𝑥𝑥 + Δ𝑦𝑦 hops but 
there are 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = (Δ𝑥𝑥+Δ𝑦𝑦)!
Δ𝑥𝑥!Δ𝑦𝑦!

    (3) 

possible minimum-length paths. 

In this paper we assume that a single node serves as an 
egress/ingress point to the higher-level control layer.  In this 
way, all nodes transmit and receive measurement and control 
data to/from this node, and the resulting control loop imposes 
real-time performance constraints on the network and the on-
chip routers. 

In order to estimate the minimum round trip latency for 
various network sizes, we developed an analytical model based 
on the example assumed system parameters shown in Table 1.  
Assuming that the chosen parameter values do not exceed the 
maximum bandwidth of any single channel, each packet will 
experience a round-trip latency 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟 = 2 ∙ �𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙𝑚𝑚𝑙𝑙𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙𝑚𝑚𝑙𝑙𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟𝑙𝑙𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴

+
𝑠𝑠𝑚𝑚𝑠𝑠𝑙𝑙𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟∙8
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� ∙ �1

2
𝑤𝑤 + 1

2
ℎ�    (4) 

 

 
Fig. 1. Portion of a notional shipboard power system with communication among converters’ control systems.  

 

 
Fig. 2:  Ring topology, 2 channels/node, worst case latency = n/2. 

 

 
Fig. 3:  Torus topology, 4 channels/node, worst case latency = √n/2. 



Table 2 shows minimum round trip latencies for the 
parameter values shown in Table 1. 

B. Routing Algorithms 
As shown in Figure 4, the simplest routing scheme for multi-

hop networks is X-Y (also called dimension-ordered) routing, in 
which the network routes packets in the X dimension until the 
packet reaches a node that is vertically aligned to the destination 
and then routes in the Y dimension [7].  X-Y routing is simple 
to implement and is guaranteed to follow minimal length routes. 

For the traffic pattern for PEBB control networks, where all 
nodes periodically send one packet and receive one packet from 
the ingress/egress node, the north and south channels into the 
ingress/egress node must carry more traffic than the east and 
west channels.  In this case, both the north and south channels 
will experience 𝑏𝑏∙ℎ−𝑏𝑏

2
 packet traversals while the east and west 

channels will experience only 𝑏𝑏
2

 packet traversals.  The east-
west channels will require a maximum channel utilization equal 
to 

𝑏𝑏𝑤𝑤𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚𝑠𝑠𝑙𝑙𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 =
𝑠𝑠𝑚𝑚𝑠𝑠𝑙𝑙𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟∙8∙

𝑤𝑤∙ℎ−𝑤𝑤
2

𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙𝑚𝑚𝑙𝑙𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝐴𝐴𝑟𝑟𝑝𝑝
  (5) 

 

In order to avoid this load imbalance, the routing algorithm 
should equally distribute the network traffic across the channels 
along the minimum paths, especially around the highest 
congested areas around the ingress/egress node.  Ideally, each of 
the four of the ingress/egress node’s channels should experience 
𝑏𝑏∙ℎ
4

 packet traversals.  To achieve this we propose “hub routing”, 
comprised of a set of pre-computed static routes between each 
node and the ingress/egress node, where each packet follows a 
path that keeps its location on the grid closest to the straight line 
between the node and the ingress/egress node. 

TABLE 1:  DESIGN PARAMETERS 

Parameter Variable Expected value 
Maximum latency of the 
Aurora links 

latencyAurora 53 clock cycles 

Packet size sizepacket 100 bytes 
Routing latency latencyroute 1 clock cycle 
Link bandwidth bwAurora 10 Gb/s 
FPGA user clock frequency freqFPGA 156.25 MHz 
Network size n 100 nodes 
Network order, n = o2 o 10 nodes 

TABLE 2:  MINIMUM ROUND TRIP LATENCIES. 

Network size Round trip latency 
5x5 4.3 us 

10x10 8.5 us 
20x20 17.0 us 
30x30 25.6 us 
40x40 34.1 us 
50x50 42.6 us 

 

 

We compute the distance between a given node at location 
(x0,y0) and a straight line (ax + by + c = 0) in the traditional way, 
i.e. |𝑙𝑙𝑥𝑥0+𝑏𝑏𝑦𝑦0+𝑙𝑙|

�𝑙𝑙2+𝑏𝑏2
.  Each node’s integrated router can implemented 

hub routing through the use of a small, pre-computed static 
routing table comprised a 𝑏𝑏∙ℎ

4
 ×  3-bit memory. 

Figure 5 shows an example path computed with hub-based 
routing, where each packet follows a path that keeps its location 
on the grid closest to the straight line between the node and the 
ingress/egress node.  Thus the maximum-loaded channels will 
require a maximum channel utilization equal to 

𝑏𝑏𝑤𝑤𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚𝑠𝑠𝑙𝑙𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 =
𝑠𝑠𝑚𝑚𝑠𝑠𝑙𝑙𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟∙8∙

𝑤𝑤∙ℎ
4

𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙𝑚𝑚𝑙𝑙𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝐴𝐴𝑟𝑟𝑝𝑝
  (6) 

 
Table 3 compares the minimum channel bandwidth 

utilization for both X-Y and Hub Routing, assuming the 
parameters given in Table 1.  X-Y routing requires more than 
the available 10 Gb/s bandwidth when scaling the network to 
30x30, while the Hub routing supports network sizes up to 
40x40. 

TABLE 3:  MINIMUM LINK BANDWIDTH 

Network size 𝒃𝒃𝒃𝒃𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 (Gb/s): XY 𝒃𝒃𝒃𝒃𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 (Gb/s): Hub 
5x5 1.9 1.2 

10x10 4.2 2.3 
20x20 8.9 4.7 
30x30 13.6 7.0 
40x40 18.3 9.4 
50x50 23.0 11.7 

 

C. Related Work 
Much of the current work in routing and topologies for 

multi-hop networks on FPGAs focus on networks-on-chip 
where a single FPGA contains all the routers comprising the 
network.  In this case the router must be as compact as possible 
[8,9].  These networks typically use non-minimal deflection-
routing to avoid the need for buffers in the router.  Deflection 
routing allows packets to follow non-minimal routes when the 
outgoing ports on the minimal path(s) are currently occupied 
with other traffic, as opposed to buffering in the router.  Because 
deflection routing increases latency and timing uncertainty it is 
not appropriate for our application.  Well-known algorithms 
developed for distributed computing also generally employ non-
minimal routing to maximize throughput, often at the cost of 
latency [10].  These networks are also generally designed for 
dynamic traffic patterns, as opposed to the static patterns 
assumed for controller networks.  Work that focuses on multi-
FPGA systems often focus on exploration of network topologies 
and not specific routing algorithms, and often do not explicitly 
consider the overheads contributed by the on-chip processors 
that interact with the network [11,12]. 

III. EXPERIMENTAL PLATFORM 
To explore the feasibility for a PEBB control network, we 

used an off-the-shelf KC705 FPGA board with an attached 



quad-SPF+ transceiver FPGA mezzanine connector (FMC) 
module. 

The KC705 has a relatively small Xilinx Kintex-7 FPGA 
with 203K logic slices and 2 MB of on chip RAM.  The board 
can connect directly to PEBB hardware managers or other 
PEBB control level interfaces via a secondary FMC expansion 
connector. The FPGA boards are themselves interconnected via 
four optical channels to form a control network to form a closed 
loop control network among the boards.  The boards also 
connect to a secondary, non-real time network through 1 Gb 
Ethernet for monitoring and control. 

The design programmed onto the FPGA is structured as a 
system-on-chip (SoC), consisting of two Microblaze soft core 
microcontrollers, on-chip memories, and DMA engines 
connected to the four bidirectional 10 Gb/s channels using the 
Xilinx 66b64b Aurora link-layer protocol. 

A. Platform Design Considerations 
Each PEBB control module collects off-board 

measurements from the attached power electronics and encodes 
and transmits the measurements and control data over the multi-

hop control network to other control nodes either within the 
same control hierarchy layer or across a layer boundary as 
dictated by the control loops in operation.  Each node will later 
receive a corresponding control message from other nodes or 
layers. Since each operating control loop is deterministic, each 
control node must complete these tasks according to a fixed 
control period.  In addition, the control system must also route 
messages on behalf of PEBB control modules on their path to or 
from other locations in the control network as needed. 

The control system is constrained by the communication 
latency imposed both by the network (in terms of worst-case 
path length) but also the on-chip overheads of processing and 
forwarding packets, which may be significant since we are using 
relatively low-speed microcontrollers.  Longer worst case delays 
will constrain the minimum control period for a given control 
layer. 

Likewise, as described in Section IIB, the effective channel 
bandwidth limits the maximum size/scale of the network, since 
larger networks have more overlapping routing paths requiring 
more channel bandwidth.  Like other network technologies, the 
effective bandwidth is dependent on the packet size.  Although 
Xilinx’s Direct Memory Access (DMA) IP modules allow the 
programmer to specify an interrupt threshold that defines the 
number of received packets before the module triggers an 
interrupt, our current implementation issues an interrupt after 
each received packet.  In this model, packets comprised of fewer 
bytes will require a higher interrupt rate to achieve higher 
utilization of the 10 Gbps channel. 

Table 4 shows the required interrupt rate and the 
corresponding number of cycles allowed for the packet handler 
to utilize all channel bandwidth, assuming an interrupt threshold 
of one.  A packet size of 32 would require 42 million interrupts 
per second, leaving only 2 cycles per interrupt using a 100 MHz 
clock, which is obviously impractical.  As shown, it is only 
feasible with 2 KB packets and above to achieve a substantial 
level of channel utilization.  We confirm these results 
experimentally later in this section.  In future work we will we 
explore the impact of adjusting the interrupt threshold to allow 
multiple in-flight packets. 

TABLE 4:  REQUIRED PROCESSOR WORKLOAD TO ACHIEVE MAXIMUM 
THEORETICAL CHANNEL BANDWIDTH. 

Packet size (bytes) 

Interrupt rate to 
saturate 10 Gbps 

channel 
(interrupts per sec) 

Maximum # clock 
cycles permitted for 

handler code 
(@100 MHz) 

32 42 M 2 
64 21 M 4 
512 2.6 M 38 

2 KB 655 K 152 
4 KB 328 K 305 
8 KB 163 K 610 

 

Figure 6 shows a block diagram of the design we 
programmed into the FPGA.  The design is logically split into 
two subsystems mastered by a separate Microblaze 
microntroller:  the controller subsystem and the monitor 
subsystem.  The two subsystems are isolated and share only one 
common peripheral, an on-chip BRAM that holds the controller 

 
Fig. 4:  X-Y Routing. 

 

 
Fig. 5:  Hub-based routing. 



state.  Both processors have local on-chip memory from which 
they execute their respective program code, both processors 
have independent interrupt controllers, and both processors have 
independent timers (the monitor processor uses its timer for the 
TCP/IP stack).  The TCP/IP stack stores its data on off-chip 
DRAM. 

B. Controller Subsystem 
The controller subsystem performs the control and routing 

tasks on behalf of the module and is optimized for latency and 
determinism.  To minimize the amount of unpredictable delays, 
we took the following steps: (1) store the microcontrollers’s 
software and data in on-chip memory, as opposed to off-chip 
memory, which has substantially higher latency, (2) limit the set 
of interrupts to only the four DMA interrupts corresponding to 
the four DMA modules connected to the Aurora interfaces 
(which only interrupt the processor when a packet arrives from 
any of the Aurora interfaces) and a timer interrupt (which 
interrupts the processor when it is time to collect measurements 
and transmit a message to the zone controller), and (3) place the 
interrupt controller in fast mode, in which the interrupt controller 
passes the handler address directly to the processor without any 
software intervention. 

C. Monitoring Subsystem 
We use a non-real time 1 Gb/s Ethernet interface for 

monitoring and control of the module.  The Ethernet subsystem 
runs as a fully-custom hardware IP module in the FPGA logic 
fabric but its TCP/IP stack runs in software.  The TCP/IP stack 
is heavyweight and imposes unpredictable loads on the 

microcontroller, but when running on its own microcontroller it 
cannot interfere with the control subsystem. 

  

IV. EXPERIMENTAL RESULTS 
In this section we describe characterization results of our 

evaluation platform. 

A. Latency 
In order to evaluate the internal latency of controller 

subsystem, we set up an experiment with a single board having 
a loopback cable from channel 0 to channel 1.  The software 
would transmit one packet every control period, and the DMA 
interrupt handler measured the round-trip delay.  This 
measurement includes the latency contributions from the 
transmitting DMA engine, the transmitting Aurora interface, the 
optical transmission latency, the receiving Aurora interface, the 
receiving DMA engine, and the interrupt controller.  These 
values represent the effective channel latency for one hop. 

Figures 7 shows the distribution of packet latencies over 1 
million packet transmissions for a 32-byte packet and a 4 KB 
packet.  Note that the Y-axis of the histograms is plotted on a 
logarithmic scale.  For the 32-byte packet, 18.3% of the packets 
experienced 1150 to 1200 cycles of latency and 81.6% of the 
packets experienced 1200 to 1250 cycles of latency. 

On the Microblaze’s 100 MHz clock, 1200 cycles equivalent 
to 12 us, while the transmission time of a 32 byte packet on a 10 

 
Fig. 6:  Top-level Design. 



Gb/s channel is 25.6 ns (note that our clock rate is less than the 
example parameters listed in Table 1). 

For the 4 KB packet, 99.9% of the packets experienced 1250 
to 1300 cycles of latency, against a 3.2 us expected transmission 
time.  The ~100-cycle latency difference between the 32-byte 
and 4 KB packet size is equivalent to approximately 1 us, caused 
by the higher transmission time for the larger packet. 

These results indicate that the packet size has little relative 
effect on the end-to-end transmission latency, since a 128X 
increase in packet size required only a 5 to 10% increase in 
latency.  Note that because the platform overheads are 3.9X to 
468X that of the channel transmission time. 

B. Bandwidth 
To evaluate the effective channel bandwidth, we added a 

transmit command to the DMA handler that causes the software 
to transmit a new packet immediately after receiving a packet.  
We used a 2000-cycle timer interrupt to gather statistics. 

Figure 8 plots the effective bandwidth of the channel, in 
Megabits per second, versus the packet size.  The 32-byte packet 
size uses 38 Mbps of the channel capacity, the 512-byte packet 
size uses 614 Mbps, the 4 KB-packet size uses 3.2 Gbps, and the 
8 KB-packet size uses 6.5 Gbps. 

These results are consistent with the extrapolated results 
shown in Table 4, which shows there is insufficient time to 
process smaller packets and allow the processor to achieve full 
channel utilization.  Our observed bandwidth is even lower than 
Table 4 suggests, since the processor must also periodically call 
the timer interrupt handler, which calculates and records 
performance statistics.  In this test we lose additional 
performance because we only allow for up to one in-flight 
packet.  In future work we will incorporate more descriptor-
based DMA and/or flow control to allow for multiple 
simultaneous in-flight packets to improve effective bandwidth 
for smaller packet sizes. 

 

Fig. 8:  Observed Aurora channel bandwidth versus packet size. 

V. CONCLUSIONS AND FUTURE WORK 
This paper describes a general methodology for building 

power electronic building blocks (PEBBs) based converters and 
systems of converters, where individual PEBB modules are 
coupled with embedded controllers interconnected on a 
distributed multi-hop communication network.  We advocate the 
use of FPGA-based base boards, where the FPGA serves as a 
substrate for embedded microcontrollers executing software that 
performs the control, routing, and monitoring functions. 

We evaluated two routing algorithms and used an analytical 
performance model to evaluate the impact of load balancing on 
system scale.  Our proposed hub-based routing algorithm is 
capable of balancing channel load for a static traffic pattern 
where all modules engage in a closed control loop with a single 
ingress/egress point to other control layers. 

Our proposed FPGA design is decomposed into two mostly 
isolated subsystems.  One of these systems is designed for real-
time control and control network routing and the other for non-
real time instrumentation and monitoring.  We characterized the 
network performance of the 10 Gbps communication 
infrastructure, and showed that larger packets, or possibly higher 
interrupt thresholds, are needed to achieve high channel 
utilization., Moreover, the interrupt handling capabilities of the 
softcore microcontrollers adds significant latency overhead, 
possibly necessitating hardware acceleration for packet 
forwarding. 

In future work we plan to develop hardware-based routers to 
lessen the impact of processor overhead on packet latency, and  
enable scatter-gather DMA mode to allow for multiple-inflight 

 
 

 
Fig. 7:  Observed packet transmit latency for 32 byte packets (top) and 4 
Kilobyte packets (bottom).  These results include packet transmission 
time over the 10 Gbps link (~3 cycles for a 32 byte packet and ~328 
cycles for a 4KB packet) and the platform overheads, such as those 
contributed by the on-chip interconnect, DMA engines, interript 
controller, and driver software.  Note that the Y-axis is logarithmic. 

 



packets between interrupts in order to lessen the impact of 
processing overhead. 
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