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Abstract 

 
In this paper we present our work toward FPGA 

acceleration of phylogenetic reconstruction, a type of 
analysis that is commonly performed in the fields of 
systematic biology and comparative genomics.  In our 
initial study, we have targeted a specific application 
that reconstructs maximum-parsimony (MP) 
phylogenies for gene-rearrangement data.  Like other 
prevalent applications in computational biology, this 
application relies on a control-dependent, memory-
intensive, and non-arithmetic combinatorial 
optimization algorithm.  To achieve hardware 
acceleration, we developed an FPGA core design that 
implements the application’s primary bottleneck 
computation.  Because our core is lightweight, we are 
able to synthesize multiple cores on a single FPGA.  
By using several cores in parallel, we have achieved a 
25X end-to-end application speedup using simulated 
input data. 

 
1. Introduction 
 

Phylogenetic analysis is the study of evolutionary 
relationships amongst a set of species.  A phylogeny 
(or phylogenetic tree) is as an unrooted binary tree 
where each vertex represents information associated 
with a species and each edge represents a series of 
evolutionary events that transformed one species into 

another.  Analyzing phylogenies is a fundamental tool 
that biologists use to infer common characteristics 
across different species based on their evolutionary 
relatedness.  Analysis of phylogenies is a vital 
component of research in such areas as drug and 
vaccine development and bio-pathway discovery [1]. 

As shown in Figure 1, a phylogeny is an unrooted 
binary tree.  Each of the n leaves has degree 1 and 
represents a species that currently exists, while each of 
the n - 2 internal vertices has degree 3 and represents a 
species that is a common ancestor.  Each edge is 
associated with an evolutionary distance, representing 
the number of evolutionary events that separate the 
two corresponding species.  Both the topology and the 
edge distances are important characteristics of the 
phylogeny. 

In general, the problem of phylogenetic 
reconstruction can be summarized as such:  given n 
input species, find a phylogeny that most closely 
resembles the species’ actual relative evolutionary 
history.  Maximum parsimony (MP) phylogeny 
reconstruction is generally considered to be among the 
most accurate reconstruction techniques because it (1) 
incorporates an evolutionary model into the 
reconstruction procedure and (2) computes biological 
data for ancestral vertices.  MP techniques operate by 
performing a bounded exhaustive search over the 
space of all possible phylogenetic trees to find the 
phylogeny that minimizes the number of evolutionary 

    
 

Figure 1.  Three of the 105 possible phylogenies for 6 input genomes.  Input species (g1, g2, …, g6) 
are shown in black while ancestral species are shown in white. 
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steps required to explain a given input set.  In other 
words, the goal is to find the tree with the minimal 
score, where the score is the sum of all the tree’s edge 
distances. 

For n input species, there are (2n-5) * (2n-7) * … * 
3 possible trees.  Since the tree space grows 
exponentially, the (optimal) MP technique is limited to 
relatively small input sets.  When implemented as a 
branch-and-bound search, reconstruction of reasonably 
sized datasets are feasible.  This search can also be 
effectively parallelized on a cluster computer, where 
each processing node searches disjoint regions of the 
tree space [2].  However, even in this mode, a single 
reconstruction procedure for 13-17 input species may 
require months of computation on a large-scale cluster 
(depending on the data set’s genome size and 
evolutionary rate). 

The goal of this work is to design FPGA cores that 
will allow a single accelerated processing node, with 
one or two FPGAs, to achieve equivalent performance 
to a medium- to large-scale cluster.  The efficiency of 
this approach would allow biology labs to have greater 
access to cluster-class compute capacity for genome 
analysis.  We also seek to demonstrate that 
applications that rely on combinatorial optimization 
can be accelerated with FPGA co-processor 
architectures, as opposed to control-independent 
arithmetic computations with which FPGA 
acceleration has traditionally been associated. 

Genome A: 1  2  3  4  5  6  7  8
Genome B: 1 -5 -4 -3 -2  6  7  8
Genome C: 1 -5 -4  6  7  8 -3 -2
Index:  0  1  2  3  4  5  6  7

 
Figure 2.  Genome B is produced from genome 
A by an inversion from genes 1 through 4.  
Genome C is produced from genome B by a 
transposition of genes 5 through 7 to index 3. 

 
2. Gene-Rearrangement Data 
 

In our current project, our goal is to accelerate MP 
reconstruction for gene rearrangement data, which 
refers to both the type of data used to represent each 
species’ genome as well as an implied evolutionary 
model.  When reconstructing phylogenies for this type 
of data, the edge distances for a given tree cannot be 
computed until after genome data for each of the 
internal vertices is computed.  Thus, for each candidate 
tree that is evaluated during the tree search, (1) its 
internal vertices must be labeled with ancestral data, 
(2) its edge distances are computed, and (3) these 
distances are summed to determine the tree score. 

Computing an edge distance can be performed with 
a fast (linear-time) algorithm, but labeling an internal 
vertex is extremely expensive (NP-HARD) [3].  For 
input sets with relatively high evolutionary rate (i.e. 
large diameter), the labeling computation constitutes 
the performance bottleneck for the overall 
reconstruction procedure.  In our initial work, we have 
implemented an FPGA core that performs the labeling 
computation entirely in hardware.  In addition, we 

developed a top-level architecture where multiple 
cores can be used in parallel to either (1) speed up the 
labeling computation for a single internal vertex, or (2) 
perform multiple labeling computations in parallel to 
label multiple internal vertices concurrently.  When we 
replace the software version of this computation with 
our hardware-based one, we have achieved an overall 
application speedup of 25X for distantly related 
datasets. 

In DNA sequence research, nucleotide sequences 
are known to undergo various edit events, including 
insertions, deletions, and substitutions.  Gene 
rearrangement data (also known as gene-order data), 
on the other hand, is represented by a ordered 
sequence of genes (usually circular).  Each gene itself 
represents a nucleotide sequence and thus exists in 
either a positive or negative orientation, where the sign 
denotes the internal ordering of the nucleotide 
sequence that the gene represents. 

According to the Nadeau-Taylor model of evolution 
[3], gene-order data is subject to gene rearrangement 
events.  These events include inversions (a gene 
subsequence is reversed in both order and polarity), 
transpositions (a gene subsequence is relocated within 
the ordering), and inverted transpositions (an inversion 
is followed by a transposition over the same gene 
subsequence).  Examples of these events are shown in 
Figure 2.  The relative rarity of genomic rearrangement 
events combined with the increased availability of 
complete genome sequences make gene-rearrangement 
data very attractive to biologists.  As a result, many 
biologists have embraced this new type of data in their 
phylogenetic work [4,5,6,7] while computer scientists 
are slowly solving the difficult problems posed by 
analyzing manipulations of gene orders [8,9]. 
 
3. GRAPPA 
 

Sankoff and Blanchette pioneered the maximum-
parsimony methods in BPAnalysis [10], and Moret et 
al improved the approach of BPAnalysis in a package 
called GRAPPA [11].  Extensive tests on biological 
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and simulated datasets have shown that trees returned 
by GRAPPA are superior to those returned by other 
methods [11]. 

GRAPPA computes a lower bound for each 
possible tree based on the ordering of its leaves [11].  
The search discards any tree, regardless of its 
topology, whose lower bound is greater than or equal 
to the best tree scored so far.  For example, the lower 
bound of a 5-leaf tree having leaf ordering (g5, g2, g1, 
g4, g3) is computed as (d(g5,g2) + d(g2,g1) + d(g1,g4) + 
d(g4,g3) + d(g3,g5)) / 2.  In practice, GRAPPA typically 
prunes more than 99.9% of trees without scoring them. 

GRAPPA scores each candidate tree not pruned by 
the lower bound computation.  Ultimately the tree 
score is defined by the sum of its edge distances, but 
the first (and most expensive) step of the scoring 
procedure is to label each internal vertex with a 
median genome.  The median genome is the optimal 
(but not necessarily unique) gene order that minimizes 
the sum of pair-wise distances between itself and the 
genome labels of each of the three neighbor vertices. 

GRAPPA labels the tree’s internal vertices using a 
two-step algorithm.  In the first step, GRAPPA 
initializes the labels of the internal vertices.  We refer 
to this as the initialization phase.  GRAPPA offers 
several different initialization methods, but the most 
effective is to label each internal vertex by computing 
the median of the three nearest labeled vertices.  
Initially, only the labelings of the leaves are available.  
However, since the labels are applied as soon as they 
are computed, an increasing number of internal 
vertices are labeled (and available) as the algorithm 
progresses. 

 
Figure 3.  A median computation becomes 
more time consuming as the diameter of its 
inputs increase. 
 

 
Figure 4.  The relative amount of total 
execution time that GRAPPA spends 
labeling internal vertices (performing median 
computations) increases asymptotically to 
100% with the diameter of the input data set.  
Thus performing median computations is the 
performance bottleneck for relatively 
“difficult” input data. 

Once the initialization phase initially labels all 
internal vertices, GRAPPA proceeds with a re-labeling 
phase, which is an iterative refinement algorithm that 
continually re-computes each internal vertex label 
using its immediate neighbors.  If the new label 
improves the median score, the new label is applied 
immediately.  The re-labeling is terminated after the 
first iteration where no labels are updated.  Note that 
this algorithm is guaranteed to converge but only 
guarantees a locally optimal solution.  Once the tree 
converges, the edge distances are computed with a 
linear-time distance function and summed to yield the 
tree score. 
 
4.  Median Computation Performance 
 

Labeling an internal vertex requires computing a 
median of three gene orders.  Our performance 
characterization of GRAPPA has shown that the time 
required to perform a median computation is an 

exponential function of the sum of pairwise distances 
between the three input gene orders and their optimal 
median.  This can also be expressed as the diameter of 
the inputs.  This was no surprise, since the median 
algorithm is NP-HARD.  This is shown graphically in 
Figure 3. 

The effect of this is that the portion of GRAPPA’s 
total execution time that is spent labeling sharply 
increases with the evolutionary rate the inputs.  This is 
also caused by lower pruning rates (thus higher scoring 
rates), since the lower bound is less effective for more 
distantly related input sets.  In practice, even 
moderately distant input sets will require over 99.9% 
of GRAPPA’s total execution time computing 
medians.  This is shown graphically in Figure 4. 

Note that the median computations performed in the 
initialization phase typically consume several orders of 
magnitude  more time than the medians computed in 
the re-labeling phase, since the diameter of these 
median computations are significantly higher in the 
early stages of the refinement procedure. 
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Figure 5.  Breakpoint median TSP 

formulation. 

Figure 6.  Graphical representation of a 
breakpoint median TSP depth-first search tree 
and associated data structures.  Pruned edges 
are excluded from the lower bound 
computation from the level they are pruned to 
the bottom of the tree, the “otherEnd” array 
stores TSP path end-points to prevent cycles 
that do not include all vertices, and the “used” 
array keeps track of which vertices in the 
current solution state have degree 2. 

5. Breakpoint Median Algorithm 
 
The breakpoint distance is an estimate of the 

number of rearrangement events that separate two 
genomes.  The breakpoint distance between genomes A 
and B is defined as the number of adjacent gene-pairs 
gh that appear in A when neither gh nor -h-g appear in 
B.  For example, (circular) genomes A=(1 -2 -3 4) and 
B=(4 2 -1 -3) have a breakpoint distance of 2, because 
gene pairs (-2 -3) and (4 1) appear in A but neither {(-2 
-3) or (3 2)} nor {(4 1) or (-1 -4)}  appear in B. 

 
5.1.  Breakpoint Median 
 

Given three genomes A, B, and C, the breakpoint 
median is a fourth genome M such that the breakpoint 
median score, score = d(A,M) + d(B,M) + d(C,M), is 
optimally minimal where d(x,y) is the breakpoint 
distance between genomes x and y. 

As shown in Figure 5, computing a breakpoint 
median for three genomes requires solving a traveling 
salesman problem (TSP) formulated in the following 
way [10].  Given genomes A, B, and C, each 
consisting of an ordering of n signed genes, construct a 
fully-connected undirected graph having vertices = {-

gn, …, -g1, g1, …, gn} and define w(g,h) to be the 
weight between vertices g and h. 

For each gene g, w(g,-g) = -∞, guaranteeing that 
each gene will appear alongside its reverse polarity 
counterpart in the TSP solution.  Define u(g,h) to be 
the number of times vertices -g and h are adjacent in 
the three genomes, and define w(g,h) = 3 - u(g,h).  If 
s1, -s1, s2, -s2, …, sn, -sn is the solution of the TSP, then 
the resultant breakpoint median is M = s1, s2, …, sn.  
This solution guarantees that the breakpoint median 
score is optimally minimal.  Note that the TSP tour 
cost of the solution, excluding the -∞ edges between 
each vertex-pair representing the positive and negative 
version of each gene in the tour, is equivalent to the 
breakpoint median score of the solution. 
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The number of cities in the TSP graph is 2n, where 
n is the number of genes.  Since n is typically less than 
1000, optimally solving the TSP is feasible.  Finding 
an optimal solution is important since heuristic 
methods to compute medians will have a detrimental 
effect on the accuracy of the reconstruction procedure. 

 
5.2.  Algorithm Implementation 
 

As shown in Figure 6, the breakpoint median 
algorithm bundled with GRAPPA performs a depth-
first branch-and-bound search over the space of all 
possible paths through the graph implied by the three 
input genomes. 

The first step of the algorithm is to establish an 
initial “best found so far” TSP tour cost to use as the 
initial upper bound.  Recall that the TSP tour cost and 
the median score of the corresponding solution are 
equivalent values.  During the re-labeling phase, this 
initial upper bound is the median score of the 
previously computed median label.  During the 
initialization phase, there is no previous median label 
so the initial upper bound is determined by finding 
which of the three input genomes has a minimum sum 
of distances to the other two, and uses this sum as the 
initial upper bound, i.e. upper bound = min 
(d(A,B)+d(A,C)),(d(A,B)+d(B,C)),(d(A,C)+d(B,C))}. 

If the search exhausts the search space without 
finding a better result, it returns this input genome as 
the result.  The second step is to read the input 
genomes and construct the resultant TSP graph.  By 
definition, each edge in the graph has weight - ∞, 0, 1, 
2, or 3.  The algorithm organizes the weight 0, 1, and 2 
edges into a list sorted by edge weight. 

It then creates an empty edge set to serve as the 
current search state, which we refer to as the partial 
solution.  All the weight -∞ edges are assumed to be in 
the current partial solution.  Thus, every vertex in the 
partial solution has a degree of one.  Note that the 
weights of these edges are not included in the tour 
cost. 

The algorithm iterates through the sorted edge list 
in order (beginning with the first edge) and adds each 
edge to the partial solution that obeys two conditions:  
(1) the edge must not cause any of the vertices in the 
tour implied by the current partial solution to have a 
degree of greater than two since the TSP tour must not 
contain branches (in our implementation, this is 
implemented with the used memory), and (2) the edge 
must not create any cycle in the current partial solution 
unless the addition of this edge results in a full tour (in 
our implementation, this is implemented with the 
otherEnd memory). 

If no edges from the current point forward in the 
sorted edge list satisfy these two conditions, the 
algorithm will record the current tour as the best found 
solution if its cost (including any weight-3 edges that 
must also be included to complete the tour) is less then 
the current upper bound. 

The first condition for adding an edge is 
implemented by keeping track of the degree of each 
vertex in the partial solution.  Condition 2 is 
implemented with a memory that keeps track of the 
end-points of all path fragments in the partial solution.  
This allows a quick way to avoid adding certain edges 
to the partial solution or including these edges into the 
lower bound computation if their inclusion would 
result in a cycle (unless the cycle includes all vertices). 

When the search begins, this memory is initialized 
to indicate that the vertices representing the positive 
and negative version of each gene form a two-city 
partial tour fragment, i.e. OtherEnd(a) = -a.  As the 
search progresses, these partial fragments grow in size.  
Each time an edge with vertices a and b is added to the 
current partial solution, the following assignments are 
made: 

OtherEnd(OtherEnd(a)) = OtherEnd(b) and  
OtherEnd(OtherEnd(b)) = OtherEnd(a). 
In order to prevent loops in the partial tour, a 

candidate edge (a,b) will not be added to the partial 
solution (or lower bound computation) if OtherEnd(a) 
= b, unless adding the edge will complete a full tour. 

 
5.3.  Lower Bound Computation 
 

Each time the search adds an edge, it computes a 
lower bound for the partial solution.  If the lower 
bound is greater than or equal to the upper bound, it 
prunes the last added edge, re-computes the lower 
bound, and either adds a new edge or prunes again. 

The search computes the lower bound using the 
following technique [6].  Initialize the lower bound to 
zero.  For each vertex that currently has a degree of 
one in the current partial solution, add the weight of 
the lowest weight edge that leads to another vertex of 
degree one in the partial solution.  This technique adds 
twice as many edges as required, so divide the final 
sum by two. 

The lower bound computation disregards any edges 
that were previously pruned at or above the current 
level in the search tree.  It also disregards any edges 
that would result in a tour cycle if that edge were 
added to the partial solution unless adding the edge 
would complete the tour.  Each time the search prunes 
an edge, the search re-computes the lower bound 
because the exclusion of the pruned edge constitutes 
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Figure 8.  Finite state machine representation 

of median core controller. 

 
Figure 7.  Simplified block diagram for the 

breakpoint median core.  The core design is 
a large sequential logic circuit that 

establishes datapaths among several 
memory elements in each clock cycle.  Static 
interconnects between memory elements are 

shown, while multiplexed interconnects 
among memory elements are established 

through the control unit (integrated within its 
output logic). 

information that was not available before the search 
added the edge originally. 
 
6. Core Design 
 

We designed our breakpoint median core in 
custom-written VHDL.  It. implements the same basic 
breakpoint median algorithm as the one bundled with 
GRAPPA with a few notable differences.  GRAPPA’s 
breakpoint median core relies on recursion such that its 
depth-first search may be realized using the program 
activation stack.  In order to achieve similar run-time 
behavior, we have implemented a stack memory using 
an on-chip block RAM (BRAM). 

The median core uses this stack to keep track of 
information required to restore the state of the search 
when a branch of the search tree is pruned.  For each 
edge that is added to the partial solution, the previous 
values of the otherEnd memory and the edge’s index 

into the sorted edge list are pushed on the stack.  Each 
time an edge is pruned (due to the lower bound or tour 
completion), the pruned edge’s index in the sorted 
edge list is pushed on the stack so that edge can be re-
included in the lower bound computation when the 
state of the search that caused the prune is changed. 

Before the median core begins operation, the host 
system performs two tasks in software.  First, it 
computes the initial upper bound.  Second, it loads the 
input genomes and the initial upper bound into a 
specific set of on-chip memory locations that 
correspond to the median core to which it wishes to 
dispatch the median computation.  The host performs 
these data transfers using a programmed I/O 
transaction across the PCI-X bus. 

The core requires a one-time overhead of 2n cycles 
to reset the search state memory of the core, 4n cycles 
for each input genome to construct the TSP graph, and 
10n clock cycles to construct the sorted list of edges 
(where n is the number of genes). 

After the initialization phase, the core proceeds by 
adding an edge (7 cycles), computing the lower bound 
(requiring 2n clock cycles), then either pruning 
(requiring 3 to 10 cycles) and performing a re-
computation of the lower bound, or simply adding 
another edge.  Any time the core reaches the end of the 
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sorted edges list (and thus the bottom of the search 
tree), if the cost of the current tour is less then the 
current best, it constructs the result tour and saves it 
(requiring n clock cycles). 

The operation of the core is clearly dominated by 
the lower bound computation.  Even for less expensive 
median computations, the core will spend nearly all of 
its execution time in this state. 

Figure 7 shows a simplified view of the median 
core microarchitecture.  As shown, the median core 
design consists of a single block of control logic that is 
interconnected to a set of on-chip block RAMs 
(BRAMs), counters, and registers.  The controller is 
designed as a finite state machine with integrated 
multiplexers that establish datapaths between the set of 
BRAMs and registers.  The state diagram for the 
controller is shown in Figure 8. 

The median core is capable of computing 
breakpoint medians of any reasonable size using only 
on-chip memory, although larger genome sizes (> 
1000 genes/genome) will increase the resource 
utilization of each single median core beyond the 
numbers described below.  The median core requires 
21 of the 444 BRAMs available on the FPGA (< 5%).  
A single median core’s logic requirements are 944 of 
the 44,096 logic slices (2%), including the logic 
overhead required for the PCI-X interface.  These 
resource requirements indicate that the required 
number of independent on-chip memories is the 
limiting scalability factor for this design.  Even with 
this limitation, we have successfully implemented 20 
independently accessible median cores on our FPGA 
(although it is possible to fit 21). 

Our breakpoint median core implementation is 
limited to a 56 MHz clock speed (two full orders of 
magnitude less than the microprocessor to which we 
are comparing against).  Our clock speed is currently 
limited by the high latency data path required by the 
lower bound computation. 

 
Figure 9.  Simplified block diagram for the 

top-level FPGA implementation of a 20-core 
design.  Due to the high clock speed 

requirement for the PCI-X interface (an 
independent clock domain from the slower 
core clock), the fan-outs and fan-ins are 

pipelined with degree 4 and 5.  Dual-ported 
split clock BRAMs are used for the input and 

output data to cross clock domains. 

 The PCI-X interface must meet a 133 MHz clock 
speed requirement.  The BRAMs used to store the 
inputs and outputs are dual-ported/dual-clocked in 
order for the data to cross clock domains.  In order to 
meet the timing requirements for the PCI-X interface, 
the PCI fan-out/fan-in to/from the cores are pipelined 
as shown in Figure 9. 
 
7. Exploiting FPGA Resources 
 

There are several techniques for using the 
parallelism of multiple median cores to speed up a 
single median computation.  We developed one 
technique that is intended for the tree initialization 
phase.  During initialization, each median core must 
rely on its three input genomes to compute an initial 
upper bound, since no previous label will exist for 
internal vertices until the re-labeling phase begins. 

Under normal circumstances, the median core is 
initialized with an initial upper bound determined by 
the minimal median score corresponding to three input 
genomes.  For input genomes A, B, and C, A’s median 
score is d(A,B) + d(A,C), B’s median score is d(B,A) + 
d(B,C), and C’s median score is d(C,A) + d(C,B). 

If the median core does not find a median solution 
with a lower score (which would guarantee that none 
exists), the software driver for the median core returns 
the corresponding input genome as the optimal result.  
If the core does find a better solution, the score of this 
result is guaranteed to be less than the initial upper 
bound. 
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Figure 10.  Per-median average performance results over 1000 median computations, when 1, 4, 

8, 12, 16, and 20 cores are used to compute a single median using the technique described in 
Section 7.

In our multi-core strategy, if the initial upper bound 
inferred from the input genomes is s, initialize n cores 
with initial upper bounds  s - 1, s - 2, …, s - (n - 1).  If 
the optimal median has a score less than s, the core 
with the lowest initial upper bound greater than the 
optimal score will converge on the optimal solution 
fastest.  Therefore, after the first core completes its 
search having found a solution with a score lower than 
its assigned initial upper bound, the host will stop the 
other cores. 

 
8. Characterizing the Breakpoint Median 
Core 
 

Our test system consists of a Dell Precision 650 
server containing a 3.06 GHz Intel Pentium Xeon 
processor.  This system is used both to execute the 
GRAPPA software implementation and to host the 
FPGA accelerator. 

The FPGA accelerator card is an Annapolis 
Microsystems Wild-Star II Pro card with a single 
Xilinx Virtex-2 Pro 100 FPGA.  It is connected to the 
host though a PCI-X interconnect.  Input genomes and 
the initial upper bound for any core are transmitted to 
the FPGA across the PCI-X interconnect using a 
programmed I/O write.  After this, the host uses a 
programmed I/O read to poll the state of any median 
core on the FPGA.  This allows it to determine when 
any individual core has completed computation.  When 
this occurs, the host performs another programmed I/O 
read to read the result genome from the core. 

Our software breakpoint median performance 
results were gathered from execution using the 

microprocessor, and our hardware breakpoint median 
results were gathered from execution on the set of 
breakpoint median cores available on the FPGA. 

For each test, we generated 1000 three-leaf 
phylogenies and extracted the leaves to use as the 
median inputs.  Each edge within each of these 
phylogenies has a distance chosen from a uniform 
random distribution having a range distance +/- 2, 
where distance is a parameter.  We performed these 
tests for a genome size of 100 genes. 

For each set of genomes, we invoke GRAPPA’s 
breakpoint median routine bbtsp and record its 
execution time.  We then use the same three genomes 
to invoke the hardware breakpoint median computation 
and record its execution time.  Note the hardware 
execution time includes the CPU-to-FPGA 
communication time as well as the time to compute the 
initial upper bound (which occurs in software). 

Speedup is measured in the traditional way, i.e. 
timesw / timehw.  A speedup of 1 would indicate 
equivalent performance between the software median 
computation and hardware median computation.  Our 
results list the arithmetic mean of the individual 
speedups relative to software for the set of 1000 
individual median computations for each input 
distance: 

1000
)(
)(1000

1
∑

== i hw

sw

itime
itime

speedup , where timehw(i) represents 

the hardware execution time of input data i. 
Figure 10 shows our performance results when each 

breakpoint median is executed over 1, 4, 8, 12, 16, and 
20 cores.  The results show a clear trend where higher-
diameter inputs achieve higher acceleration.  This is 

929292



primarily because the overheads required to dispatch 
computations to the FPGA (i.e. the host to send the 
inputs to the core, for the core to initialize itself, for 
the host to poll the core’s state, and for the host to read 
the result from the core) have greater relative effect for 
easy-to-compute input sets.  However, the lowest 
speedup result was still greater than one for a single 
median core (verified down to distance=8).  We 
stopped recording results at distance=24 due to very 
high run times (> 30 minutes average computation per 
median software computation). 

The results also show that more distant input sets 
are able to take greater advantage of multi-core 
parallelism than less distant input sets.  In fact, less 
distant input sets actually perform worse with more 
cores as compared to fewer cores due to the additional 
communication overheads associated with transferring 
the inputs into multiple cores.  However, there is a 
point of diminishing returns at 12 cores, as the 16 and 
20 core approach consistently performs worse than the 
12-core approach for the inputs tested.  Our best result 
is 26.4X for distance 24 over 12 cores. 

 
9. Accelerated-GRAPPA 
 

We made several modifications to the GRAPPA 
code to accelerate the tree scoring procedure by 
forcing it to dispatch all median computations to the 
median cores on the FPGA. 

During the initialization phase, GRAPPA derives 
great performance benefit from computing each initial 
vertex’s label serially using previously computed 
labels as potential inputs, as opposed to computing 
each initial label in parallel using only the nearest leaf 
labels (this technique reduces the average diameter of 
the three genomes involved in each individual median 
computation and improves the distances of the trees 
that enter into the labeling phase).  Accelerated 
GRAPPA uses this same technique, but computes each 
initial label by dispatching each median computation in 
parallel to twelve median cores.  Because the 
initialization phase dominates the time GRAPPA 
spends for tree scoring, this technique contributes 
significantly to overall application speedup. 
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Figure 11.  Average performance results over 
10 phylogeny reconstructions of 8 input 

genomes.  These results indicate the total end-
to-end application speedup for accelerating the 
median computation within GRAPPA.  The X-

axis specifies the average edge distance of the 
randomly generated phylogenies whose leaves 

are used as inputs. 

In the re-labeling phase, GRAPPA labels each 
internal vertex serially and applies the label 
immediately if the new label improves the 
corresponding vertex’s score.  Each label that is 
applied may be used in subsequent median 
computations within the same iteration.  In this phase, 
Accelerated-GRAPPA dispatches each median 
computation to a single core, but performs these 
median computations in parallel for all of the tree’s 

internal vertices for each iteration.  Although there is a 
sufficient number of available cores to dispatch each 
median to multiple cores (i.e. eight leaves have six 
internal vertices, requiring 18 of the 20 cores for three-
core median computations), the low diameter of the 
median computations in this phase would make the 
communication overhead of this approach negate the 
benefits. 

After the slowest median computation has 
completed for a given iteration, only the median results 
that improve the score of the corresponding internal 
vertex label are applied for the next iteration.  If no 
median computation improves the score of the 
corresponding label, the re-labeling phase is 
terminated. 

A consequence of parallel re-labeling is that only 
the labels from the previous iteration (or from the 
initialization phase, in the case of the first iteration) are 
available for any given iteration.  This changes the 
convergence behavior from the software re-labeling 
phase, but still yields significant improvement in most 
experimental runs.  Unfortunately, accelerating the re-
labeling phase contributes only minor overall 
application speedup due to the relatively low overall 
time spent during this component of the scoring 
procedure. 

Figure 11 shows our average speedups for entire 
GRAPPA runs over 10 unique 8-leaf, 100-gene 
synthetic datasets.  The input sets were produced by 
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synthesizing phylogenies using a specified average 
edge distance.  The leaves are extracted for use as 
inputs.  The speedup for each experimental run was 
computed as timeSW / timeHW).  The results shown are 
the arithmetic mean of the individual speedups relative 
to software over each set of 10 GRAPPA runs for each 
input distance, as described in Section 8. 

As with the breakpoint median performance results, 
the results show a clear trend where the average 
speedup increases with the evolution rate of the input 
set.  These results are very sensitive to the average 
diameter of the input set.  There are two reasons for 
this.  First, higher evolutionary rate input sets force 
GRAPPA to spend higher portions of its execution 
time computing medians.  In other words, more 
difficult data sets force the median computation to 
become more significant a bottleneck.  Thus, 
accelerating the median computation has a higher 
impact on overall application speedup.  Second, the 
median computations themselves are more greatly 
accelerated as the diameter of the median inputs 
increase.  Speedup results span from one to 23 as the 
average input diameter increases. 
 
10. Conclusions and Future Work 
 

Our current results demonstrate that Accelerated-
GRAPPA is capable of achieving a 23X speedup for 
input sets that have a relatively high evolution rate.  
Our most significant problem is that we can only 
effectively utilize the parallelism from 57% of the 
FPGA resources (12 out of a maximum of 21 cores).  
Even when using these resources, the performance 
improvement does not scale efficiently with increasing 
numbers of cores.  Our future work is focused on more 
efficient exploitation of hardware resources. 

We are currently developing an enhancements to 
our median core design to allow for extraction of finer-
grain parallelism and allow for more efficient use of 
median cores.  In one approach, multiple median cores 
will search disjoint regions of a single TSP search 
space and broadcast updates to a global upper bound.  
In this approach, all cores must exhaust their search 
space and the best result found across all the cores is 
guaranteed to be optimal. 

In another approach, each core will search over the 
entire search space but choose equal-weight edges in 
different orders, since following different search paths 
will allow some cores to find lower upper bounds 
faster than others.  A globally maintained upper bound 
is also used in this approach (using an upper bound 
broadcast).  As in the previous approach, at least one 
core is guaranteed to find the optimal solution. 

In addition, we are developing a tree generation and 
bounding core that will explore the phylogeny search 
space.  Our current design requires only two BRAMs, 
indicating that it is possible to implement 222 parallel 
tree generation cores on a single Virtex-2 Pro 100.  
Since this is exactly how GRAPPA runs in cluster 
mode, we refer to this approach as “cluster-on-a-chip”.  
Our ultimate goal is to combine tree generation and 
bounding cores with median cores on a single FPGA, 
allowing candidate trees from any of the tree 
generation and bounding cores to be scored with 
median cores on the same FPGA. 
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