
Exploiting Matrix Symmetry to Improve FPGA-
Accelerated Conjugate Gradient

Jason D. Bakos, Krishna K. Nagar
Department of Computer Science and Engineering

University of South Carolina
Columbia, SC USA

{jbakos, nagar}@cse.sc.edu

Abstract— In this paper we describe a new approach for
accelerating the Conjugate Gradient (CG) method using an
FPGA co-processor. As in previous approaches, our co-processor
performs a double-precision sparse matrix-vector multiplication.
However, our implementation doubles the amount of
computation per unit of input data by exploiting the symmetry of
the input matrix and computing the upper and lower triangle of
the input matrix in parallel. Using a Virtex-2 Pro 100 FPGA, we
have achieved an observed computational throughput of 1155
MFLOPS.

Keywords- FPGA, reconfigurable computing, high-
performance computing, sparse matrix vector multiply, conjugate
gradient

I. INTRODUCTION
Linear system solvers are used frequently in scientific

computing. They are also computationally expensive and
highly parallelizable, and this has made them popular targets
for FPGA acceleration. Linear system solvers constitute the
kernel computation of many partial differential equation (PDE)
solvers [1], which are used for modeling many types of
physical systems. Linear system solvers can be divided into
two categories: direct, where the solution is computed by
evaluating a derived formula, and iterative where the solution is
approximated until a certain acceptable value is reached.
Direct methods can only be feasibly used for solving small
systems of equations. Nevertheless, there has been recent work
to accelerate such methods, and these efforts are motivated by
problems in electrical power distribution [2,3]. These solvers
are usually limited to matrices of order less than 100. Iterative
methods are used to solve larger systems of equations, but are
only guaranteed to converge to a solution if the input matrix
adheres to a set of characteristics that are specific to each
method. The computationally intensive component of
performing iterative methods is the matrix-vector
multiplication, and one need only to implement this operation
in hardware to effectively accelerate an iterative method. In
most iterative methods, the matrix is invariant across iterations
so it need only be transferred to the co-processor memory once
per method invocation. As such, it is generally the case that the
co-processor’s memory bandwidth will determine the
performance of the matrix-vector multiplication.

In this paper we describe our accelerator architecture for the
double-precision Conjugate Gradient method for large input
matrices. In order to reduce the effect that off-chip memory

transfer capacity on the multiplier’s throughput, we take
advantage of the property of CG that requires the input matrix
to be symmetric. This allows the multiplier to compute both
the top triangle and bottom triangle of the input matrix in
parallel. To our knowledge, this is the first sparse matrix-
vector multiplier architecture that exploits matrix symmetry to
nearly double the ratio of computation to communication and
thus achievable computational throughput. This paper
describes an actual, working implementation of this accelerator
architecture, and our test results include all actual
communication, system, and data encoding overheads.

II. BASE ARCHITECTURE
Our SMVM architecture is specifically designed to

accelerate the conjugate gradient (CG) method. CG requires
that the input matrix be symmetrical. When only the upper
triangle and the diagonal is used to represent the matrix, the
FPGA performs two multiplications for each non-zero matrix
input value that is not on the diagonal. These products are used
for accumulating the dot products for two distinct rows, which
nearly doubles the amount of computation performed per unit
of I/O. To take advantage of this symmetry, we have divided
our SMVM architecture into two sections--one that performs
computation for the upper triangle, including the diagonal, and
the other that performs computation for the lower triangle
excluding the diagonal. Each matrix value streamed into the
accelerator is fanned-out to both sections. As a result, each dot
product computed by the SMVM architecture is partially
computed by both the upper and lower architectures, except for
the first row. This arrangement produces two result vectors, for
the upper and lower triangle, which are added by the host in
software to produce the final vector product.

We designed our SSpVxM core using custom VHDL and
targeted our Annapolis Micro Systems Wild Star II Pro
computing card with its Virtex-II Pro 2 100 FPGA. Before
computation begins, the matrix is transferred using DMA from
the host memory into the FPGA card’s onboard SRAM, which
is composed of six banks of 36-bit wide DDR2 SRAM
modules that can theoretically deliver a new word every 5 ns
for a total of 5.15 GB/s of memory bandwidth. We map the
memory banks onto two 64-bit double-precision matrix values
and their corresponding 16-bit column identifiers, utilizing 160
of the 216 bits. Our double-precision adders and multipliers
(generated with Xilinx Core Generator) are limited to 148 MHz
in the context of our design, allowing our design to utilize

2009 17th IEEE Symposium on Field Programmable Custom Computing Machines

978-0-7695-3716-0/09 $25.00 © 2009 IEEE

DOI 10.1109/FCCM.2009.44

223

Fig 1. Upper Triangle Architecture

Fig. 2. DSA Reduction Circuit Design from [4].

approximately 3 GB/s of the total theoretical memory
bandwidth.

In our design we use a slightly modified version of the
Compressed Row Storage (CRS) format The CRS format
stores a matrix in three arrays, val, col, and ptr. val and col
contain the value and corresponding column number for each
non-zero value, arranged in a raster order starting with the
upper-left and continuing column-wise left-to-right and then
row-wise from the top to bottom. The ptr array stores the
indices within val and col where each row begins, terminated
with a value that contains the size of val and col. Instead of
using the ptr array, our design assumes the end-of-row
information is encoded within the val and col arrays using zero-
termination. We do this for practical reasons as described
below. Since our accelerator is designed specifically for
symmetric matrices, we assume that only the non-zero matrix
values on the diagonal and within the upper triangle of the
matrix are represented in the matrix input data.

The purpose of the upper triangle architecture was to
compute the partial dot products for only the diagonal and
upper triangle of the input matrix:

∑
+<

=

⋅=
)1(

)(
))(()()(

iptrj

iptrj
upper jcolvecjvaliresult ,

where i is the row for which the partial dot product is being
computed.

Our upper triangle architecture is shown in Figure 1. A

copy of the vector is stored on-chip in a two-port 64-bit block
RAM for each multiplier. Both of these BRAMs are directly
written in parallel by the host using a DMA transaction.
Incoming matrix values read from the on-board SRAM are
paired with a corresponding value from the vector and sent into
a multiplier. Each pair of products are added and their sum is
sent into a reduction circuit for accumulation.

A. Reduction Circuit Design
Our reduction circuit design is the double-strided adder

(DSA) from [4] and shown in Figure 2. The DSA has two
adders that independently operate in one of three states: fill,
steady state, or coalesce. In the fill state, a new value from the
FIFO is added to zero, sending individual inputs into the adder
pipeline. This is performed until the adder pipeline fills or until
input values for the current input set are exhausted. In the case
where the adder pipeline fills and additional input values for
the current input set are waiting in the FIFO (i.e. the number of
input values exceeds the number of adder pipeline stages), the
adder switches to steady-state mode. In this state, subsequent
input values are added to the sums being fed back from the
adder output. After all input values for the current input set are
exhausted, the adder switches to the coalesce state. In this
state, the adder does not consume any input values from the
FIFO. Instead, the two most recent non-zero values produced
by the adder pipeline are fed back into the adder. When two
non-zeros values are not available, zeros are routed into the
adder instead. The adder stays in this state until all the sums in
the adder pipeline have been coalesced into a final output sum.

For an adder with α pipeline stages, an input set of n values
requires ⎡ ⎤ 21log2 −+αα cycles to coalesce when α≥n ,

but requires ⎡ ⎤ ⎡ ⎤()nn n −−+ 2log
2 21logα cycles when

α<n . For example, for our 14-cycle adders, this means that
matrix rows that have at least 28 values per row will require 68
cycles to coalesce, since 2 input values are included with each
DSA input. When an adder is coalescing it does not accept
new input values from the FIFO, but as long as the other adder
is not also in the coalesce state it will take over accepting new
values. This is guaranteed if the size of each input set is greater
than or equal to the number of coalesce cycles required for the
previous read input set. However, if this is not the case, there
will be cycles where both adders are in the coalesce state,
causing the input FIFO to grow. Since the DSA is only capable
of reading one value at a time, there is no time where the size
of the FIFO will decrease until the core stops reading new
matrix values from the on-board memory. As a result, input
matrices having rows with less than 136 non-zero values have
the potential to casue the FIFO to overflow. For these cases,
we designed a throttler circuit that forces the SSpVxM core to
stop reading new matrix values when the FIFO size reaches
90% and resumes when the size reaches 10% (our DSA input
FIFO holds 1024 values).

If the DSA throttles the SSpVxM core during operation,
this effectively reduces our memory bandwidth and thus the
performance of the core. However, this behavior depends on
the characteristics of the input matrix, i.e. it will only affect
small input matrices or large matrices that are very sparse,

224

Fig 3. Lower triangle architecture. This design multiplies each incoming matrix value by the vector element corresponding to the current matrix row.

These products are accumulated into a BRAM for each multiplier. If a RAW data hazard is detected in either accumulation circuit, the product is “aborted,”
by being sent to the host and accumulated in software. After each matrix row, the values accumulated in each BRAM are added and sent to the host.

having less than 136 non-zero values per row on average on the
upper triangle.

B. Lower Triangle Architecture
The primary contribution of this paper is the lower triangle

architecture, which is shown in Figure 3. Computing the vector
contributed by the lower triangle in parallel with computing the
vector contributed by the upper triangle allows two additional
multiplies without requiring any additional memory bandwidth.

The lower triangle architecture treats the row number of
each incoming value as its column number. Since the
incoming matrix values are grouped by row, the corresponding
vector value can be read from one of the on-chip vector
BRAMs and stored prior to each matrix row being streamed
from on-board memory into the FPGA (shown as BUF1 in Fig.
3). This saves BRAM utilization, as the lower triangle
architecture need not include an on-chip copy of the vector--the
vector value for each row can be read during the zero-
termination for the previous row. This allows for a substantial
savings in on-chip memory, but does require that we zero-
terminate the values from each row as well as including a
leading zero as the first value in the matrix storage.

The stream of products produced by the two lower triangle
multipliers must be accumulated into the result location
referenced by the column numbers of the incoming matrix
values (i.e.the column number is now treated as a row number).
As a result, the values to be accumulated will not arrive in a
contiguous stream, preventing us from using a reduction
circuit. Instead, we use a BRAM for each multiplier to keep

track of the accumulated values for each entry in the result
vector for the lower triangle, along with a traditional feedback-
based adder (BRAM3 and BRAM5 in Fig. 3). There are
several complications that arise from this arrangement. The
first is the initialization. While BRAMs can be initialized
when the FPGA is configured, they cannot be reset after each
matrix-vector multiply. To solve this, we use set minimal-
width BRAMs (16 bits) as flags to mark whether a given result
vector entry has previously been written (BRAM4 and BRAM6
in Fig. 3). The entries of the flag BRAMs are reset by the host
as it writes the input vector and are set to one when the first
result vector entry is accumulated. These flags control the
input to the feedback accumulator.

The feedback-based accumulator is also subject to data
hazards caused by the adder latency. This occurs when two
input matrix values with the same column number are not
separated by the latency of the accumulator adders. To address
this problem, we designed a circuit that detects these data
hazards, i.e. when a product emerging from a multiplier is to be
added to an accumulated value that is currently in the adder
pipeline. This happens when two values in the matrix having
the same column are not separated by at least nα entries in the
matrix memory, where n is the number of multipliers and α is
the combined latency of the adder and accumulator memory.
This corresponds to 30 in our design. When this happens, the
product is “ejected” from the accelerator and instead read by
the host. We refer to this as an “abort value”. Abort values are
added into the final result vector by the host. These data
hazards are detected by a 15-stage shift registers for each adder
that keeps track of which accumulator entry is to be updated by

225

TABLE 1. PERFORMANCE RESULTS FOR MATRIX-VECTOR MULTIPLY. COLUMN “AVERAGE NZ/ROW UPPER TRIANGLE” LISTS THE AVERAGE NUMBER OF NON-
ZERO VALUES PER ROW ON THE UPPER TRIANGLE. LOWER VALUES FOR THIS LEAD TO THE DSA THROTTLING THE INPUT, EFFECTIVELY REDUCING THE

MEMORY BANDWIDTH.

Matrix

average
nz/row
upper

triangle
Software

time
Software
MFLOPS

Co-
processor

time

Co-
processor
MFLOPS

Result
throughput

%
products

on
upper

triangle
aborted

BCSSTK10 10.7 294 μs 154
MFLOPS 216 μs 209

MFLOPS 235 MB/s 20%

BCSSTK13 21.4 1923 μs 88
MFLOPS 492 μs 345

MFLOPS 208 MB/s 11%

BCSSTK15 15.4 1430 μs 168
MFLOPS 895 μs 268

MFLOPS 268 MB/s 22%

BCSSTK16 30.2 8812 μs 66
MFLOPS 1343 μs 436

MFLOPS 128 MB/s 4%

BCSSTK17 20.0 5055 μs 172
MFLOPS 2649 μs 329

MFLOPS 181 MB/s 9%

BCSSTK18 6.7 2320 μs 133
MFLOPS 1716 μs 181

MFLOPS 242 MB/s 15%

BCSSTK25 8.7 7844 μs 66
MFLOPS 2571 μs 203

MFLOPS 258 MB/s 20%

S3RMT3M3 19.8 4726 μs 87
MFLOPS 1350 μs 307

MFLOPS 140 MB/s 5%

S2RMT3M1 20.3 2537 μs 172
MFLOPS 1380 μs 316

MFLOPS 149 MB/s 6%

S2RMQ4M1 24.5 9451 μs 55
MFLOPS 1497 μs 352

MFLOPS 245 MB/s 16%

BIGMATRIX 500.5 16168 μs 123
MFLOPS 1731 μs 1155

MFLOPS 14 MB/s .02%

the value currently in the adder pipeline. If there is a match
with the column associated with the value emerging from the
multiplier, the value is aborted and sent to the host.

III. EXPERIMENTAL SETUP
We implemented our architecture on a Virtex-2 Pro 100

FPGA on our Annapolis Micro Systems WildStar II-Pro
platform. At peak, our architecture performs four double-
precision multiplies and six double-precision adds per cycle at
148 MHz (1480 MFLOPS). It is relatively trivial to scale this
architecture to accommodate platforms with higher memory
bandwidth. We tested the co-processor using a set of real
symmetric positive definite matrices (requirements imposed by
the CG method) obtained from Matrix Market [5]. We also
added a randomly generated, fully populated order 1000 matrix
for comparison. This matrix cannot be solved with CG.

Table 1 summarizes our results for a single matrix-vector
multiply for each test matrix. As shown in the table, the
performance of the co-processor increases with the average
number of non-zero values per row for the upper triangle is
increased. This is due to the DSA throttling the input speed
when its FIFO fills. The “result throughput” indicates the
amount of DMA capacity that was used to send the result data
to the host memory. This value depends on the percentage of
products computed by the lower triangle architecture that are
aborted due to a data hazard. This percentage is shown in the
last column. As far as we know, none of these multiplies
required more result DMA capacity than was available.

Our test matrix is the only matrix that has at least 136 non-
zero values per row on average, and thus represents an upper
bound for our expected performance. Because of its high
density, it also causes the least number of aborted products due
to data hazards.

IV. CONCLUSIONS
We presented a sparse matrix-vector multiplier design for

accelerating the Conjugate Gradient method that exploits
matrix symmetry to achiever higher computational parallelism.
We have shown that the performance of the design depends
heavily on the reduction circuit and its behavior when reducing
input sets that are smaller than its latency. In our future work
we will replace the DSA reduction circuit with one that exhibits
higher adder utilization for matrices with a low average number
of non-zero values per row.

REFERENCES
[1] R. L. Burden, J. D. Faires, “Numerical Analysis 6/e,” Brooks/Cole

Publishers.
[2] S. Haridas, S. Ziavras, “FPGA Implementation of a Cholesky Algorithm

for a Shared-Memory Multiprocessor Architecture,” Journal of Parallel
Algorithms and Applications, Vol. 19, No. 6, pp 411-426, Dec. 2004.

[3] X. Wang, S. Ziavras, “Parallel Direct Solution of Linear Equations on
FPGA-Based Machines,” Proc. International Parallel and Distributed
Processing Symposium (IPDPS’03).

[4] L.Zhuo, V. K. Prasanna, “High-Performance Reduction Circuits Using
Deeply Pipelined Operators on FPGAs,” IEEE Trans. Parallel and Dist.
Sys., Vol. 18, No. 10, October 2007.

[5] NIST Matrix Market, http://math.nist.gov/MatrixMarket, January 2009.

226

