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Abstract— In this paper we describe a double precision floating 
point sparse matrix-vector multiplier (SpMV) and its 
performance as implemented on a Convey HC-1 
reconfigurable computer.  The primary contributions of this 
work are a novel streaming reduction architecture for floating 
point accumulation, a novel on-chip cache optimized for 
streaming compressed sparse row (CSR) matrices, and end-to-
end integration with the HC-1’s system, programming model, 
and runtime environment.  The design is composed of 32 
parallel processing elements, each connected to the HC-1’s 
coprocessor memory and each containing a streaming 
multiply-accumulator and local vector cache.  When used on 
the HC-1, each PE has a peak throughput of 300 double 
precision MFLOP/s, giving a total peak throughput of 9.6 
GFLOPS/s.  For our test matrices, we demonstrate up to 40% 
of the peak performance and compare these results with 
results obtained using the CUSparse library on an NVIDIA 
Tesla S1070 GPU.  In most cases our implementation exceeds 
the performance of the GPU. 

Keywords-floating point accumulation; reduction; 
reconfigurable computing; sparse matrix; SpMV 

I.  INTRODUCTION 
Sparse Matrix Vector Multiplication (SpMV) describes 

solving y = Ax where y and x are vectors and A is a large 
matrix populated mostly with zeroes.  SpMV is frequently 
employed in scientific and engineering applications and is 
the kernel for iterative linear system solvers such as the 
conjugant gradient method [1

Due to the sparseness of the matrix, it is often not 
practical to store every entry of the matrix in a traditional 
dense representation, so compressed sparse representations 
such as compressed sparse row (CSR) format are often used 
to represent the matrices [

]. 
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For example, the second non-zero value in row 4 could 
be referenced as val[ptr[4]+1] and its corresponding column 
number in row 4 could be referenced as col[ptr[4]+1].  If the 
matrix has M rows and the array indices begin at 0, then 
ptr[M] stores the total number of non-zeros in the matrix.  
Multiplying a CSR matrix by a vector stored in an array 
called vec requires a row-wise multiply accumulate (MAC) 
operation for each matrix row: 

].  The CSR format stores the 
non-zero elements in an array called val, the corresponding 
column numbers of an array called col, and the array indices 
of the first entry of each row in an array called ptr.  ptr is 
terminated with the total number of non-zero entries. 

sum = sum + val[i] x vec[col[i]], where i iterates for each 
non-zero entry of the matrix. 

As shown in these examples, CSR computations 
fundamentally require indirect addressing, which cannot be 
expressed in an affine loop and therefore are difficult to 
automatically optimize for SIMD and vector processors.  In 
addition, SpMV architectures need only to perform two 
floating-point operations for each matrix value, yielding a 
computation/communication ratio of at best only two FLOPs 
per 12 bytes read (assuming a 64-bit value and a 32-bit 
column number) and this doesn’t include references to input 
vector data.  As such, performance is highly dependent on 
memory bandwidth.  Since CSR data is stored sequentially, 
consecutive values can be read using overlapping 
outstanding requests from consecutive addresses, making it 
easy to maximize effective bandwidth.  However, CSR 
stores values in consecutive memory locations in row-major 
order, so a third challenge for achieving high performance 
for SpMV comes from the need to accumulate values that are 
delivered in consecutive clock cycles into a deeply pipelined 
floating-point adder.  This is a design challenge because 
subsequent additions on incoming values cannot be 
performed until the previous addition has completed.  In 
order to overcome this hazard, static data scheduling or 
dynamic architectural methods must be employed. 

As a result of these challenges, previous implementations 
of SpMV, both in special-purpose hardware and software, 
often suffer from low hardware utilization and developing 
new SpMV implementations remains an important area of 
study. 

In this paper, we present an SpMV architecture based on 
our own novel streaming reduction circuit and specialized 
cache optimized for CSR data.  In order to characterize our 
approach, we implemented this architecture on the Convey 
HC-1, a self-contained heterogeneous system containing a 
Xeon-based host and an FPGA-based co-processor board 
with four user programmable Virtex5-LX330 FPGAs.  We 
compare the performance of our SpMV with the NVIDIA 
CUDA CUSPARSE library implementation running on an 
NVIDIA Tesla-S1070 GPU. 

II. PREVIOUS WORK 
There has been much prior work in designing efficient 

FPGA-based SpMV architectures.  The most novel aspect of 
individual SpMV implementations is often the approach 
taken in designing the floating-point accumulator. 
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Historically, there have been two basic approaches for 
designing high-performance double precision accumulators.  
The first approach is to statically schedule the input data in 
order to interleave values and partial sums from different 
rows, such that consecutive values belonging to each row are 
delivered to the accumulator--which is designed as a simple 
feedback adder--at a period corresponding to the pipeline 
latency of the adder.  This still allows the adder to accept a 
new value every clock cycle while avoiding the 
accumulation data hazard among values in the same 
accumulation set (matrix row).  Unfortunately, this method 
requires a large up-front cost in scheduling input data and is 
not practical for large data sets. 

An early example of this approach was the work of 
deLorimier and DeHon [ 3

The second approach is to use a dynamic reduction 
technique that dynamically selects each input or partial sum 
to send into the adder--dynamically managing the progress 
of each active accumulation set using a controller (i.e. 
dynamically scheduling the inputs).  For the latter case, these 
approaches can be divided into two types depending on 
whether they use a single adder or multiple adders. 

].  Their scheduling technique 
leads to the architecture’s performance being highly 
dependent on the structure of the matrix, although on average 
they were able to achieve 66% of the peak performance in 
their simulation-based studies. 

An early example using the dynamic reduction technique 
was from Prasanna's group at the University of Southern 
California [4

A similar implementation from UT-Knoxville and Oak 
Ridge National Laboratory used a similar approach but with 
a parallel—as opposed to a linear--array of n adders, where n 
was the adder depth [

].  In their earliest work, they used a linear array 
of adders to create a flattened binary adder tree where each 
adder in the array was utilized at half the rate of the previous 
adder in the array.  This required multiple adders with 
exponentially decreasing utilization, had a fixed maximum 
set size, and required stalls between matrix rows. 

5

Prasanna's group later developed two improved reduction 
circuits, called the double- and single-strided adders (DSA, 
SSA), that solved many of the problems of earlier 
accumulator design [

].  This implementation striped each 
consecutive input across each adder in turn, achieving a fixed 
utilization of 1/n for each adder. 

6

An improved single-adder streaming reduction 
architecture was later developed at the University of Twente 
[

].  These new architectures required 
only two and one adders, respectively.  In addition, they did 

not limit the maximum number of values that can be 
accumulated and did not need to be stalled between 
accumulation sets.  However, these designs required a 
relatively large amount of buffer memory and extremely 
complex control logic which limited their clock speed. 

7

In each of the above discussed work, pre-made adders 
(usually generated with Xilinx Core Generator) have been 
used as the core of the accumulator.  Another approach is to 
modify the adder itself such that the de-normalization and 
significand addition steps have a single cycle latency, which 
makes it possible to use a feedback without scheduling.  To 
minimize the latency of denormalize portion, which includes 
an exponent comparison and a shift of one of the 
significands, both inputs are base-converted to reduce the 
width of exponent while increasing the width of the mantissa 
[

].  This design is the current state-of-the-art, as it requires 
less memory and less complex control than Prassanna’s SSA 
design.  In this paper we describe a new streaming reduction 
technique that requires even less memory and simpler 
control logic than this design. 

8 ].  This reduces the latency of the denormalize while 
increasing the adder width.  Since wide adders can be 
achieved cheaply with carry-chained DSP48 components, 
these steps can sometimes be performed in one cycle.  This 
technique is best suited for single precision operands but can 
be extended to double precision as well [9

III. BACKGROUND:  CONVEY HC-1 

].  However, in 
general this approach requires an unacceptably long clock 
period. 

At Supercomputing 2009, Convey Computer unveiled 
the production version of the HC-1, their contribution to the 
space of socket-based reconfigurable computers.  The HC-1 
is unique in several ways.  Unlike in-socket coprocessors 
from Nallatech [10], DRC [11], and XtremeData [12

The design of the coprocessor board is depicted in Figure 
1.  There are four user-programmable Virtex-5 LX 330s, 

]—all 
of which are confined to a footprint matching the size of the 
socket--Convey uses a mezzanine connector to bring the 
front side bus (FSB) interface to a large coprocessor board 
roughly the size of an ATX motherboard.  This coprocessor 
board is housed in a 1U chassis that is fused to the top of 
another 1U chassis containing the host motherboard. 

 
Figure 1.  The HC-1 coprocessor board.  Four application engines connect to eight memory controllers through a full crossbar. 
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which Convey calls “application engines (AEs)”.  Convey 
refers to a particular configuration of these FPGAs as a 
“personality”.  Convey licenses their own personalities and 
corresponding compilers, development tools, simulators, 
debuggers, and application libraries.  Currently, this includes 
three soft-core vector processors and a Smith-Waterman 
sequence alignment personality.  Convey has not yet 
developed a personality that is specifically designed for 
sparse matrix computations, nor do they currently provide a 
sparse BLAS library targeted to one of their vector 
personalities. 

The four AEs are each connected to eight independent 
memory controllers through a full crossbar.  Each memory 
controller is implemented on its own FPGA and is connected 
to two Convey-designed scatter-gather DIMM modules.  
Each AE has a 2.5 GB/s link to each memory controller, and 
each SGDIMM has a 5 GB/s link to its corresponding 
memory controller.  As a result, the effective memory 
bandwidth of the AEs is dependent on their memory access 
pattern.  For example, each AE can achieve a theoretical 
peak bandwidth of 20 GB/s when striding across a minimum 
of eight of the sixteen DIMMs across eight different memory 
controllers, but this bandwidth could drop if two other AEs 
attempt to read from the same set of eight DIMMs since this 
may saturate the 5 GB/s DIMM-memory controller links.  
All four AEs can achieve an aggregate bandwidth of 80 GB/s 
when used together assuming a uniformly distributed access 
pattern across all sixteen DIMMs.  For double-precision CSR 
SpMV with 32-bit column indices, this gives a peak 
performance of 80 GB/s / (12 bytes/2 FLOPs) = ~13 
GFLOPs/s.  

The most unique property of the HC-1 is that the 
coprocessor memory is fully coherent with the host memory.  
The coherence is implemented using the snoopy coherence 
mechanism built into the Intel FSB protocol.  This creates a 
common global virtual address space that both the host and 
coprocessor share.  As in classical snoopy coherence 
protocols, each virtual memory address in both the host and 
coprocessor local memory may be in an invalid, exclusive, or 
shared state.  Shared memory locations are guaranteed have 
identical contents in both the host and coprocessor memory.  
Exclusive locations in one memory are invalid in the other, 
and represent locations that have been written but not yet 
read in (and thus automatically propagated to) the other 
memory.  Whenever a virtual memory location transitions 
from exclusive to shared, the contents of the memory are 
updated in the requestor’s local memory.  The coherence 
mechanism is transparent to the user and removes the need 
for explicit DMA negotiations and transactions (required for 
PCI-based coprocessors). 

The coprocessor board contains two FPGAs that together 
form the “application engine hub (AEH)”.  One of these 
FPGAs serves as the coprocessor board’s interface to the 
FSB, maintains the snoopy memory coherence protocol and 
manages the page table for the coprocessor memory.  This 
FPGA is actually mounted to the mezzanine connector.  The 
second AEH FPGA contains the “scalar processor”, a soft-
core processor that implements the base Convey instruction 
set.  The scalar processor is a substantial general-purpose 

processor architecture and features such as out-of-order 
execution, branch predication, register renaming, sliding 
register windows, and a virtualized register set.  The scalar 
processor plays a significant role on the coprocessor because 
it is the mechanism by which the host invokes computations 
on the AEs.  In Convey’s programming model, the AEs act 
as coprocessors to the scalar processor as they implement 
custom instructions, while the scalar processor acts as 
coprocessor for the host CPU. 

When using the Convey Personality Development Kit 
(PDK), code for the scalar processor is generally written by 
hand in Convey’s own scalar processor assembly language.  
After assembly, the scalar processor code is linked into the 
host executable in a linker section named “ctext”.  On 
execution, scalar processor routines can be invoked from the 
host code by the blocking and non-blocking versions of the 
“copcall” API functions. 

The scalar processor is connected to each AE via a point-
to-point link, and uses this link to dispatch instructions to the 
AEs.  Examples of such instructions include move 
instructions for exchanging data between scalar processor 
registers and AE registers, as well as the custom AE 
instructions, a set of 32 “dummy” instructions that can be 
used to invoke user-defined behaviors on the AEs.  Through 
the dispatch interface on the AE, logic on the AEs can also 
trigger exceptions and implement memory synchronization 
behaviors. 

Designing custom personalities requires the use of the 
Convey PDK.  The PDK is physically comprised of a set of 
makefiles to support simulation and synthesis design flows, a 
set of Verilog support and interface files, a set of simulation 
models for all the non-programmable components of the 
coprocessor board (such as the memory controllers and 
memory modules), and a PLI-based interface to allow the 
host code to interface with a behavioral HDL simulator such 
as Modelsim. 

Developing with the PDK involves working within a 
Convey-supplied wrapper that gives the user logic access to 
instruction dispatches from the scalar processor, access to all 
eight memory controllers, access to the coprocessor’s 
management processor for debugging support, and access to 
the AE-to-AE links.  However, the wrapper requires fairly 
substantial resource overheads:   66 out of the 288 18Kb 
BRAMS and approximately 10% of the slices on each 
FPGA.  Convey supplies a fixed 150 MHz clock to the user 
logic on each FPGA. 

IV. DATA FORMAT 
We designed our SpMV kernels in 8157 lines of hand-

written VHDL.  In order to simplify the SpMV controller 
design, we use a slightly modified version of the CSR format 
in order to eliminate the use of the ptr array.  As described 
above, the CSR format stores a matrix in three arrays, val, 
col, and ptr. val and col contain the value and corresponding 
column number for each non-zero value, arranged in a raster 
order starting with the upper-left and continuing column-
wise left-to-right and then row-wise from the top to bottom.  
The ptr array stores the indexes within val and col where 
each row begins, terminated with a value that contains the 

3



size of val and col.  Instead of using the ptr array, we encode 
the end-of-row information within the val and col arrays 
using zero termination.  Thus, to mark the termination of a 
row, we use 0 for both the val and col values.  This increases 
the length of these arrays by the number of matrix rows and 
requires pre-processing of the matrix data.  However, for 
applications such as iterative system solvers that invoke 
SpMV iteratively using an invariant matrix, this 
preprocessing step would only be a one-time upfront cost. 

V. REDUCTION CIRCUIT DESIGN 
Our goal was to develop a floating-point accumulator 

suited to double-precision CSR-based SpMV using only one 
double-precision floating-point adder coupled to external 
buffering and control to dynamically schedule the inputs to 
the adder.  While designing the accumulator, we make the 
following assumptions: 

(1) input values are delivered serially, one per cycle, 
(2) output order need not match the arrival order of 

accumulation sets, 
(3) the accumulation sets are contiguous, meaning that 

the values from different accumulation sets are not inter-
mixed, and 

(4) the size of each accumulation set is variable and is not 
known a priori. 

As Figure 2 depicts, the general idea is to add both 
control logic--in the form of comparators, counters, and 
buffers--around a single adder in order to form a dynamically 
scheduled accumulator.  More specifically, the accumulator 
architecture consists of a set of data paths that allow input 
values and the adder output to be delivered into the adder or 
buffered based on their corresponding accumulation set ID 
and the state of the system.  In this case, the set ID represents 
the matrix row for the purpose of computing a dot product.  
Data paths are established by the control unit according to 
five basic rules. 

A. Data Path Rules 
The rules which govern the inputs to the pipeline and 

inputs to the buffers are as follows: 
Rule 1: Combine the adder output with a buffered value.  

Buffer the incoming value. 
Rule 2: Combine two buffered values.  Buffer the 

incoming value.  Buffer the adder output (if necessary). 
Rule 3: Combine the incoming value with the adder 

output. 
Rule 4: Combine the incoming value with a buffered 

value.  Buffer the adder output (if necessary). 
Rule 5: Combine the incoming value with 0 to the adder 

pipeline.  Buffer the adder output (if necessary). 
In order to describe the rules in a more concise manner, 

we represent the incoming input value to the accumulator as 
input.value and input.set, buffer n as bufn.value and 
bufn.set,  the value emerging from the adder pipeline as 
adderOut.value and adderOut.set, the inputs to the adder 
pipeline addIn1 and addIn2 and the reduced accumulated 
sum as result.value and result.set.  Also, we represent the 
number of partial sums belonging to set s as numActive(s). 

Using this notation, we re-describe the rules below, in 
descending order of priority. 

Rule 1: 
𝑖𝑓∃𝑛: 𝑏𝑢𝑓𝑛. 𝑠𝑒𝑡 = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡. 𝑠𝑒𝑡 𝑡ℎ𝑒𝑛 {
𝑎𝑑𝑑𝐼𝑛1: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡, 𝑎𝑑𝑑𝐼𝑛2: = 𝑏𝑢𝑓𝑛
𝑖𝑓 𝑖𝑛𝑝𝑢𝑡. 𝑣𝑎𝑙𝑖𝑑 𝑡ℎ𝑒𝑛 {𝑏𝑢𝑓𝑛 ≔ 𝑖𝑛𝑝𝑢𝑡}}

 

 
Rule 2: 

𝑖𝑓∃𝑖, 𝑗: 𝑏𝑢𝑓𝑖 . 𝑠𝑒𝑡 = 𝑏𝑢𝑓𝑗. 𝑠𝑒𝑡 𝑡ℎ𝑒𝑛 {
𝑎𝑑𝑑𝐼𝑛1: = 𝑏𝑢𝑓𝑖, 𝑎𝑑𝑑𝐼𝑛2: = 𝑏𝑢𝑓𝑗

𝑖𝑓 𝑖𝑛𝑝𝑢𝑡. 𝑣𝑎𝑙𝑖𝑑 𝑡ℎ𝑒𝑛 {𝑏𝑢𝑓𝑖: = 𝑖𝑛𝑝𝑢𝑡}
𝑖𝑓𝑛𝑢𝑚𝐴𝑐𝑡𝑖𝑣𝑒(𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡. 𝑠𝑒𝑡) = 1 𝑡ℎ𝑒𝑛{

𝑟𝑒𝑠𝑢𝑙𝑡: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡}
𝑒𝑙𝑠𝑒{𝑏𝑢𝑓𝑗: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡}}

 

 
Rule 3: 

𝑖𝑓𝑖𝑛𝑝𝑢𝑡. 𝑣𝑎𝑙𝑖𝑑 𝑡ℎ𝑒𝑛 {
𝑖𝑓 𝑖𝑛𝑝𝑢𝑡. 𝑠𝑒𝑡 = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡. 𝑠𝑒𝑡 𝑡ℎ𝑒𝑛{

𝑎𝑑𝑑𝐼𝑛1: = 𝑖𝑛𝑝𝑢𝑡
𝑎𝑑𝑑𝐼𝑛2: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡}}

 

 

 
Figure 2.  The accumulator is designed by adding control logic 

around the adder pipeline.  

 
Figure 3.  Data routing for rules 1 (a) through 5 (e), as well as the 

special case for rule 5 (f). 
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Rule 4: 
𝑖𝑓 𝑖𝑛𝑝𝑢𝑡. 𝑣𝑎𝑙𝑖𝑑 𝑡ℎ𝑒𝑛 {

𝑖𝑓∃𝑛:𝑏𝑢𝑓𝑛. 𝑠𝑒𝑡 = 𝑖𝑛𝑝𝑢𝑡. 𝑠𝑒𝑡 𝑡ℎ𝑒𝑛 {
𝑎𝑑𝑑𝐼𝑛1: = 𝑖𝑛𝑝𝑢𝑡
𝑎𝑑𝑑𝐼𝑛2: = 𝑏𝑢𝑓𝑛

𝑖𝑓𝑛𝑢𝑚𝐴𝑐𝑡𝑖𝑣𝑒(𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡. 𝑠𝑒𝑡) = 1 𝑡ℎ𝑒𝑛 {
𝑟𝑒𝑠𝑢𝑙𝑡: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡}

𝑒𝑙𝑠𝑒{𝑏𝑢𝑓𝑛: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡}}}

 

 
Rule 5: 

𝑖𝑓 𝑖𝑛𝑝𝑢𝑡. 𝑣𝑎𝑙𝑖𝑑 𝑡ℎ𝑒𝑛 {
𝑎𝑑𝑑𝐼𝑛1 ≔ 𝑖𝑛𝑝𝑢𝑡
𝑎𝑑𝑑𝐼𝑛2 ≔ 0

𝑖𝑓𝑛𝑢𝑚𝐴𝑐𝑡𝑖𝑣𝑒(𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡. 𝑠𝑒𝑡) = 1 𝑡ℎ𝑒𝑛 {
𝑟𝑒𝑠𝑢𝑙𝑡: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡} 𝑒𝑙𝑠𝑒 {
𝑖𝑓 ∃𝑛: 𝑏𝑢𝑓𝑛.𝑣𝑎𝑙𝑖𝑑 = 0 𝑡ℎ𝑒𝑛 {

𝑏𝑢𝑓𝑛 ≔ 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡} 𝑒𝑙𝑠𝑒 {𝑒𝑟𝑟𝑜𝑟}}}
𝑒𝑙𝑠𝑒 {

𝑎𝑑𝑑𝐼𝑛1 ≔ 𝐴𝑑𝑑𝑒𝑟𝑂𝑢𝑡
𝑎𝑑𝑑𝐼𝑛2 ∶= 0}

 

 
Figure 3 shows various configurations of the reduction 

circuit:  (a) the output of the pipeline belongs to the same set 
as a buffered value; (b) two buffered values belong to the 
same set (c) the incoming value and adder output belong to 
the same set; (d) the incoming value and buffered value 
belong to the same set; (e) the incoming value does not 
match the set of the pipeline output or any of the buffered 
values; (f) there’s no incoming value. 

B. Tracking Set IDs 
As shown in Figure 4, in order to determine when a set 

ID has been reduced (accumulated) into a single value, we 
use three small dual-ported memories, each with a 
corresponding counter connected to the write port.  Together, 
these memories keep track of the number of active values 
belonging to each set ID in each cycle, i.e. numActive(). 

The write port of each memory is used to increment or 
decrement the current value in the corresponding memory 
location.  The write port of one memory is connected to 
input.set and always increments the value associated with 
this set ID corresponding to the incoming value. 

The write port of the second memory is connected to 
adderIn.set and always decrements the value associated with 
this set ID whenever two values from this set enter the adder.  
This occurs under all rules except for 5, since each of these 
rules implement a reduction operation. 

The write port of the third memory is connected to 
adderOut.set and always decrements the value associated 
with this set ID whenever the number of active values for 
this set ID reaches one.  In other words, this counter is used 
to decrement the number of active values for a set at the time 
when the set is reduced to single value and subsequently 
ejected from the reduction circuit. 

The read port of each memory is connected to 
adderOut.set, and outputs the current counter value for the 

set ID that is currently at the output of the adder.  These three 
values are added to produce the actual number of active 
values for this set ID.  When the sum is one, the controller 
signals that the set ID has been completely reduced.  When 
this occurs, the set ID and corresponding sum is output from 
the reduction circuit. 

C. Double Precision Streaming Multiply-Accumulator 
Design 
The core of each PE is a double precision streaming 

multiply-accumulator (MAC).  The MAC consists of the 
reduction circuit-based accumulator fed by a double-
precision multiplier. 

During initialization, the host provides each PE with a 
workload, consisting of an initial row number, a starting 
address in the matrix memory, and the total number of values 
to multiply.  The MAC keeps track of which row is currently 
being processed by incrementing the row number each time a 
zero termination is read.  The MAC includes a FIFO for 
buffering incoming products between the multiplier and 
accumulator. 

D. Processing Element Design 
The processing element (PE) design is shown in Figure 5. 

It consists of a vector cache, a shifter, the multiply-
accumulator as described above, a controller, and a result 
FIFO. 

The role of the PE is to load matrix values and stream 
them into the multiply-accumulator.  In order to achieve 
maximum memory bandwidth, the PE must load matrix data 
in parallel—across all eight memory interfaces—and 
serialize it before streaming it into the multiplier.  The HC-
1’s memory interfaces respond to outstanding load requests 
in a randomized order.  Also, each memory interface is only 
capable of addressing one eighth of the address space, and—
due to the way the HC-1 partitions its address space among 
the memory controllers—the PE must read at least four 
consecutive words from each memory controller in order to 
read a contiguous block of addresses from the memory.  To 
address both of these issues, a small on chip matrix cache is 
used to buffer incoming matrix data.  A global, 64KB cache 
on each AE is subdivided into eight segments (one for each 
PE).  The cache is organized as 32 x 512 x 32 BRAMs.  
Each segment holds 672 matrix values and their 
corresponding column number (“val-col pairs”). 

Matrix data is read from the cache in blocks of 42 val-col 
pairs, loaded in parallel into a shift register, and then each 
val-col pair is shifted out serially.  Since the matrix cache is 
shared among all PEs, only one PE can read from it at any 
time.  As such, access is arbitrated using fixed priority 
according to PE ID number.  After each PE has consumed all 
sixteen blocks of cached matrix data held for it in the matrix 
cache, the PE sends a request signal to the top-level global 
memory controller, which then reads a new segment into the 
matrix cache.  During a cache miss, this line size insures that 
there are an equal number of reads from each SGDIMM. 

The incoming stream of column numbers is used to index 
the input vector to obtain the value to be multiplied with the 
matrix value.  Many FPGA-based SpMV implementations in 

5



the literature assume that a copy of the entire input vector for 
each multiplier can be stored chip or use blocking techniques 
to perform the SpMV over multiple passes of the input 
matrix.  Since this architecture is designed for multiplying 
large matrices, we assume that the entire input vector will 
not fit within on-chip memory for each PE.  As such, we 
designed a vector cache for each PE to hold a subset of the 
input vector.  The non-values in many sparse matrices 
exhibit spatial locality, as values are often clustered in nearly 
columns.  To take advantage of this, we implemented the 
cache as a traditional four-line direct mapped cache where 
each line holds 2048 consecutive double-precision values 
from the vector.  In total the cache holds 8192 double-
precision values.  As with the matrix cache, during a cache 
miss there are an equal number of reads from each SGDIMM 
on the coprocessor memory. 

The vector cache is local to each PE and vector data can 
thus be duplicated across the FPGA, depending on how the 
workload is distributed among the PEs.  The top-level 
memory controller can only service one vector miss or 
matrix request at any time. 

Each time the MAC computes a dot product value, the 
value and its corresponding set ID (i.e. row ID) are written 
into the PE’s result FIFO.  The global memory controller 
monitors the state of each PE’s result FIFO and writes any 
pending results to coprocessor memory as soon as any 
pending matrix or vector requests have completed.  The 
coprocessor memory address for each write is computed by 
adding the set ID, multiplied by eight, to the vector base 
address, which is written into all PEs by the host prior to 
execution.  Result values are written to coprocessor memory 

using a fixed priority according to PE ID number.  Result 
writes are given priority over cache misses, since they 
generally only require one cycle to complete while cache 
misses take substantially longer to service. 

Our top-level design is shown in Figure 6.  As shown, the 
shared matrix cache, each PE, and the result FIFOs all share 
access to the global memory controller.  PE requests for 
vector and matrix cache misses, as well as result write 
requests, are serialized and arbitrated in one pool using a 
fixed-priority scheme according to PE ID number. 

VI. IMPLEMENTATION ON CONVEY HC-1 
In this section we describe specific issues related to our 

personality design. 

A. Resource Requirements 
As described in Section 3, the HC-1 contains four user-

programmable FPGAs called the application engines (AEs).  
Each AE has an interface to eight memory controllers and 
each memory controller interface has two 64-bit wide ports 
on the system clock, corresponding to each clock edge for 
the DDR memory. 

TABLE I.  RESOURCE UTILIZATION 

Application 
Engine Slices BRAM DSP48E 

4 PE per AE 26,055 / 51,840 
(50%) 

146 / 288 
(51%) 

48 / 192 
(25%) 

8 PE per AE 38,225 / 51,840 
(73%) 

210 / 288 
(73%) 

96 / 192 
(50%) 

 

 
Figure 6.  Top-level design. 

 
Figure 4.  Design for tracking the number of active partial sums in an 

accumulation set. 

 
Figure 5.  PE design. 
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When designing an on-chip cache, in order to take 
advantage of all available off-chip memory bandwidth, 
enough BRAMs must be instanced to consume 8 * 2 * 64 = 
1024 bits in a single clock cycle.  At minimum BRAM depth 
(512), this yields a minimum of sixteen 512x36 BRAMs for 
each vector cache and the matrix cache, requiring 144 
BRAMs to support the fully populated (eight PE) AE design.  
Since the Convey-designed memory controller interfaces 
themselves require an overhead of 66 BRAMs. 

Table 1 summarizes the resource usage of our AE design.  
As shown, BRAM and slice usage scale almost identically, 
while DSP usage is low in comparison. 

B. Parallelizing SpMV 
We parallelize the SpMV operation as follows.  Since all 

matrix rows can be processed independently, we assign each 
PE an equal workload by dividing the set of matrix rows into 
equal-sized sets and distributing each set to the PEs across all 
four AEs.  To do this, the host sends a matrix base address to 
each PE that specifies the starting location in the matrix data, 
as well as a starting row number and the number of rows to 
process before completion.  This requires that matrix rows 
may not cross PE boundaries, which we ensure in the host by 
inserting zero padding where needed. 

VII. GPU SPMV 
GPUs have become a popular platform for accelerating 

scientific applications, particularly data parallel floating-
point kernels such as computational fluid dynamics [13], 
ODE/PDE-based simulation [14], and medical imaging [15].  
However, due to the challenges with working with 
compressed sparse matrices as described in Section I, 
achieving high performance on GPU architectures for CSR-
formatted sparse matrix arithmetic remains an open problem 
for which efforts are still in progress by both NVIDIA and 
third parties [16, 17

In addition, there is a still a substantial gap between 
single and double precision floating point performance, even 
on current generation GPUs (although this gap appears to be 
closing over subsequent generations of GPU architectures).  
According to NVIDIA, there was a 10X performance gap 
between single and double precision performance on Tesla 
GPUs and a 5X performance gap on Fermi GPUs [

]. 

18
GPUs have approximately 50% more memory bandwidth 

per GPU than the combined memory bandwidth of all four of 
the HC-1’s AEs.  This gives it an upper performance bound 
of near 20 GFLOPS/s.  However, as shown in the results, the 

GPU achieves substantially lower ratio of this peak 
performance than the FPGA architecture. 

]. 

We used NVIDIA’s CUDA CUSPARSE library on a 
Tesla S1070 to measure GPU performance of our test 
matrices [19

VIII. EXPERIMENTAL RESULTS 

].  CUSPARSE supports sparse versions of basic 
linear algebra subroutines (BLAS) for a variety of sparse 
matrix representations, including CSR.  We used 
CUSPARSE, as opposed to other third-party CUDA-based 
sparse matrix libraries, since CUSPARSE is the official de 
facto library endorsed by NVIDIA.  Although the Tesla-
S1070 consists of four GPUs, CUSPARSE can only to run 
on a single GPU even when multiple GPUs are available to 
the host. 

We chose a set of test matrices from Matrix Market [20] 
and the University of Florida Matrix Collection [21

The test matrices are summarized in Table 2, along with 
the corresponding throughput achieved with CUSPARSE 
and the HC-1.  Throughput is computed as 2*nz / (execution 
time), where the execution time is measured without 
including transfer time between host memory and 
coprocessor memory. 

].  We 
chose the matrices to cover a wide range of matrix orders, 
total number of nonzero entries, and average number of 
nonzero values per matrix row (sparseness). 

As shown in Table 2, the HC-1 generally outperformed 
the Tesla.  However, the HC-1’s performance doesn’t scale 
well from four PEs/AE to eight PEs/AE, which is caused by 
memory interface contention and controller overhead.  For 
one matrix, dw8192, scaling up the number of PEs slightly 
reduced performance. 

IX. CONCLUSIONS AND FUTURE WORK 
In this paper we described our CSR sparse matrix-vector 

multiplier and its implementation on the Convey HC-1 
reconfigurable computer.  The contributions of this paper 
include a new streaming reduction circuit design and an on-
chip memory architecture optimized for CSR-formatted 
sparse matrix data.  Our results show performance that 
exceeds that of the Tesla GPU.  While the Tesla is a 
previous-generation architecture, so is the Virtex-5 LX 
FPGAs on which the HC-1 is based. 

In the future, we plan to improve several limitations in 
our current design, described below. 

(1)  At this time, the top-level memory controller is only 
capable of servicing a single cache miss at a time.  In other 
words, each cache miss must wait until the current cache 

TABLE II.  EXPERIMENTAL RESULTS, NVIDIA CUSPARSE ON TESLA T10 GPU VS. CONVEY HC-1 

Matrix Application r * c nz nz/row 
CUSPARSE 
GFLOPs/s 

HC-1 16 PE 
GFLOPs/s 

HC-1 32 PE 
GFLOPs/s 

dw8192 Electromagnetics 8192*8192 41746 5.10 0.49 1.71 1.65 
t2d_q9 Structural 9801*9801 87025 8.88 0.94 2.07 2.48 
epb1 Thermal 14734*14734 95053 6.45 0.80 2.18 2.56 
raefsky1 Computational fluid dynamics 3242*3242 294276 90.77 2.59 2.94 3.85 
psmigr_2 Economics 3140*3140 540022 171.98 2.83 2.84 3.94 
torso2 2D model of a torso 115967*115967 1033473 8.91 3.00 1.06 1.17 

 

7



miss is complete and there is no overlap when servicing 
cache misses.  References to off-chip coprocessor memory 
have long latency but the HC-1 supports a large number of 
outstanding requests.  As such, it is possible to overlap 
requests for multiple cache misses, which would reduce the 
miss time. 

(2)  The HC-1’s memory channels are independently 
controlled, and each has an independent request FIFO that 
has feedback signals to stall the requestor when the reference 
request FIFO becomes full.  In our current design, the entire 
memory controller stalls when any of the stall signals 
becomes asserted.  By decoupling the requests going out on 
the channels and only stalling the requests on the specific 
channels that request a stall, we may be able to further 
improve achieved memory throughput. 

(3)  During startup, several PEs may request identical 
cache lines, since the current memory controller does not 
support broadcasts to multiple PEs.  By implementing 
broadcasted vector data requests, we can decrease the 
number of duplicated bulk off-chip memory loads. 

We also plan to perform a more formal mathematical 
characterization of our reduction circuit design in order to 
bound the number of required buffers, input FIFO depth, 
number of active set counters, counter width, and row ID 
width as a function of adder pipeline depth and minimum 
accumulation set size. 

In addition, there are many design trade-offs that may be 
explored for this design.  Due to memory contention for the 
off-chip memory interfaces by the PEs, it may be possible to 
achieve higher performance by instancing fewer PEs but a 
higher amount of on-chip vector cache and/or matrix cache 
for each PE.  Other degrees of freedom include number of 
vector cache lines and associativity.  We plan to use 
modeling techniques to explore this design space to find the 
optimal number of PEs versus cache resources to achieve 
higher PE utilization across various matrix characteristics.  
We also plan to add performance counters to the design in 
order to instrument and measure the overheads required by 
the memory system.  Finally, we plan to extend this design to 
support more sparse BLAS routines such as sparse matrix-
matrix multiply. 
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