
A Sparse Matrix Personality for the Convey HC-1

Krishna K. Nagar
Dept. of Computer Science and Engineering

University of South Carolina
Columbia, SC USA
nagar@email.sc.edu

Jason D. Bakos
Dept. of Computer Science and Engineering

University of South Carolina
Columbia, SC USA
jbakos@cse.sc.edu

Abstract— In this paper we describe a double precision floating
point sparse matrix-vector multiplier (SpMV) and its
performance as implemented on a Convey HC-1
reconfigurable computer. The primary contributions of this
work are a novel streaming reduction architecture for floating
point accumulation, a novel on-chip cache optimized for
streaming compressed sparse row (CSR) matrices, and end-to-
end integration with the HC-1’s system, programming model,
and runtime environment. The design is composed of 32
parallel processing elements, each connected to the HC-1’s
coprocessor memory and each containing a streaming
multiply-accumulator and local vector cache. When used on
the HC-1, each PE has a peak throughput of 300 double
precision MFLOP/s, giving a total peak throughput of 9.6
GFLOPS/s. For our test matrices, we demonstrate up to 40%
of the peak performance and compare these results with
results obtained using the CUSparse library on an NVIDIA
Tesla S1070 GPU. In most cases our implementation exceeds
the performance of the GPU.

Keywords-floating point accumulation; reduction;
reconfigurable computing; sparse matrix; SpMV

I. INTRODUCTION
Sparse Matrix Vector Multiplication (SpMV) describes

solving y = Ax where y and x are vectors and A is a large
matrix populated mostly with zeroes. SpMV is frequently
employed in scientific and engineering applications and is
the kernel for iterative linear system solvers such as the
conjugant gradient method [1

Due to the sparseness of the matrix, it is often not
practical to store every entry of the matrix in a traditional
dense representation, so compressed sparse representations
such as compressed sparse row (CSR) format are often used
to represent the matrices [

].

2

For example, the second non-zero value in row 4 could
be referenced as val[ptr[4]+1] and its corresponding column
number in row 4 could be referenced as col[ptr[4]+1]. If the
matrix has M rows and the array indices begin at 0, then
ptr[M] stores the total number of non-zeros in the matrix.
Multiplying a CSR matrix by a vector stored in an array
called vec requires a row-wise multiply accumulate (MAC)
operation for each matrix row:

]. The CSR format stores the
non-zero elements in an array called val, the corresponding
column numbers of an array called col, and the array indices
of the first entry of each row in an array called ptr. ptr is
terminated with the total number of non-zero entries.

sum = sum + val[i] x vec[col[i]], where i iterates for each
non-zero entry of the matrix.

As shown in these examples, CSR computations
fundamentally require indirect addressing, which cannot be
expressed in an affine loop and therefore are difficult to
automatically optimize for SIMD and vector processors. In
addition, SpMV architectures need only to perform two
floating-point operations for each matrix value, yielding a
computation/communication ratio of at best only two FLOPs
per 12 bytes read (assuming a 64-bit value and a 32-bit
column number) and this doesn’t include references to input
vector data. As such, performance is highly dependent on
memory bandwidth. Since CSR data is stored sequentially,
consecutive values can be read using overlapping
outstanding requests from consecutive addresses, making it
easy to maximize effective bandwidth. However, CSR
stores values in consecutive memory locations in row-major
order, so a third challenge for achieving high performance
for SpMV comes from the need to accumulate values that are
delivered in consecutive clock cycles into a deeply pipelined
floating-point adder. This is a design challenge because
subsequent additions on incoming values cannot be
performed until the previous addition has completed. In
order to overcome this hazard, static data scheduling or
dynamic architectural methods must be employed.

As a result of these challenges, previous implementations
of SpMV, both in special-purpose hardware and software,
often suffer from low hardware utilization and developing
new SpMV implementations remains an important area of
study.

In this paper, we present an SpMV architecture based on
our own novel streaming reduction circuit and specialized
cache optimized for CSR data. In order to characterize our
approach, we implemented this architecture on the Convey
HC-1, a self-contained heterogeneous system containing a
Xeon-based host and an FPGA-based co-processor board
with four user programmable Virtex5-LX330 FPGAs. We
compare the performance of our SpMV with the NVIDIA
CUDA CUSPARSE library implementation running on an
NVIDIA Tesla-S1070 GPU.

II. PREVIOUS WORK
There has been much prior work in designing efficient

FPGA-based SpMV architectures. The most novel aspect of
individual SpMV implementations is often the approach
taken in designing the floating-point accumulator.

IEEE International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4301-7/11 $26.00 © 2011 IEEE

DOI 10.1109/FCCM.2011.60

1

Historically, there have been two basic approaches for
designing high-performance double precision accumulators.
The first approach is to statically schedule the input data in
order to interleave values and partial sums from different
rows, such that consecutive values belonging to each row are
delivered to the accumulator--which is designed as a simple
feedback adder--at a period corresponding to the pipeline
latency of the adder. This still allows the adder to accept a
new value every clock cycle while avoiding the
accumulation data hazard among values in the same
accumulation set (matrix row). Unfortunately, this method
requires a large up-front cost in scheduling input data and is
not practical for large data sets.

An early example of this approach was the work of
deLorimier and DeHon [3

The second approach is to use a dynamic reduction
technique that dynamically selects each input or partial sum
to send into the adder--dynamically managing the progress
of each active accumulation set using a controller (i.e.
dynamically scheduling the inputs). For the latter case, these
approaches can be divided into two types depending on
whether they use a single adder or multiple adders.

]. Their scheduling technique
leads to the architecture’s performance being highly
dependent on the structure of the matrix, although on average
they were able to achieve 66% of the peak performance in
their simulation-based studies.

An early example using the dynamic reduction technique
was from Prasanna's group at the University of Southern
California [4

A similar implementation from UT-Knoxville and Oak
Ridge National Laboratory used a similar approach but with
a parallel—as opposed to a linear--array of n adders, where n
was the adder depth [

]. In their earliest work, they used a linear array
of adders to create a flattened binary adder tree where each
adder in the array was utilized at half the rate of the previous
adder in the array. This required multiple adders with
exponentially decreasing utilization, had a fixed maximum
set size, and required stalls between matrix rows.

5

Prasanna's group later developed two improved reduction
circuits, called the double- and single-strided adders (DSA,
SSA), that solved many of the problems of earlier
accumulator design [

]. This implementation striped each
consecutive input across each adder in turn, achieving a fixed
utilization of 1/n for each adder.

6

An improved single-adder streaming reduction
architecture was later developed at the University of Twente
[

]. These new architectures required
only two and one adders, respectively. In addition, they did

not limit the maximum number of values that can be
accumulated and did not need to be stalled between
accumulation sets. However, these designs required a
relatively large amount of buffer memory and extremely
complex control logic which limited their clock speed.

7

In each of the above discussed work, pre-made adders
(usually generated with Xilinx Core Generator) have been
used as the core of the accumulator. Another approach is to
modify the adder itself such that the de-normalization and
significand addition steps have a single cycle latency, which
makes it possible to use a feedback without scheduling. To
minimize the latency of denormalize portion, which includes
an exponent comparison and a shift of one of the
significands, both inputs are base-converted to reduce the
width of exponent while increasing the width of the mantissa
[

]. This design is the current state-of-the-art, as it requires
less memory and less complex control than Prassanna’s SSA
design. In this paper we describe a new streaming reduction
technique that requires even less memory and simpler
control logic than this design.

8]. This reduces the latency of the denormalize while
increasing the adder width. Since wide adders can be
achieved cheaply with carry-chained DSP48 components,
these steps can sometimes be performed in one cycle. This
technique is best suited for single precision operands but can
be extended to double precision as well [9

III. BACKGROUND: CONVEY HC-1

]. However, in
general this approach requires an unacceptably long clock
period.

At Supercomputing 2009, Convey Computer unveiled
the production version of the HC-1, their contribution to the
space of socket-based reconfigurable computers. The HC-1
is unique in several ways. Unlike in-socket coprocessors
from Nallatech [10], DRC [11], and XtremeData [12

The design of the coprocessor board is depicted in Figure
1. There are four user-programmable Virtex-5 LX 330s,

]—all
of which are confined to a footprint matching the size of the
socket--Convey uses a mezzanine connector to bring the
front side bus (FSB) interface to a large coprocessor board
roughly the size of an ATX motherboard. This coprocessor
board is housed in a 1U chassis that is fused to the top of
another 1U chassis containing the host motherboard.

Figure 1. The HC-1 coprocessor board. Four application engines connect to eight memory controllers through a full crossbar.

2

which Convey calls “application engines (AEs)”. Convey
refers to a particular configuration of these FPGAs as a
“personality”. Convey licenses their own personalities and
corresponding compilers, development tools, simulators,
debuggers, and application libraries. Currently, this includes
three soft-core vector processors and a Smith-Waterman
sequence alignment personality. Convey has not yet
developed a personality that is specifically designed for
sparse matrix computations, nor do they currently provide a
sparse BLAS library targeted to one of their vector
personalities.

The four AEs are each connected to eight independent
memory controllers through a full crossbar. Each memory
controller is implemented on its own FPGA and is connected
to two Convey-designed scatter-gather DIMM modules.
Each AE has a 2.5 GB/s link to each memory controller, and
each SGDIMM has a 5 GB/s link to its corresponding
memory controller. As a result, the effective memory
bandwidth of the AEs is dependent on their memory access
pattern. For example, each AE can achieve a theoretical
peak bandwidth of 20 GB/s when striding across a minimum
of eight of the sixteen DIMMs across eight different memory
controllers, but this bandwidth could drop if two other AEs
attempt to read from the same set of eight DIMMs since this
may saturate the 5 GB/s DIMM-memory controller links.
All four AEs can achieve an aggregate bandwidth of 80 GB/s
when used together assuming a uniformly distributed access
pattern across all sixteen DIMMs. For double-precision CSR
SpMV with 32-bit column indices, this gives a peak
performance of 80 GB/s / (12 bytes/2 FLOPs) = ~13
GFLOPs/s.

The most unique property of the HC-1 is that the
coprocessor memory is fully coherent with the host memory.
The coherence is implemented using the snoopy coherence
mechanism built into the Intel FSB protocol. This creates a
common global virtual address space that both the host and
coprocessor share. As in classical snoopy coherence
protocols, each virtual memory address in both the host and
coprocessor local memory may be in an invalid, exclusive, or
shared state. Shared memory locations are guaranteed have
identical contents in both the host and coprocessor memory.
Exclusive locations in one memory are invalid in the other,
and represent locations that have been written but not yet
read in (and thus automatically propagated to) the other
memory. Whenever a virtual memory location transitions
from exclusive to shared, the contents of the memory are
updated in the requestor’s local memory. The coherence
mechanism is transparent to the user and removes the need
for explicit DMA negotiations and transactions (required for
PCI-based coprocessors).

The coprocessor board contains two FPGAs that together
form the “application engine hub (AEH)”. One of these
FPGAs serves as the coprocessor board’s interface to the
FSB, maintains the snoopy memory coherence protocol and
manages the page table for the coprocessor memory. This
FPGA is actually mounted to the mezzanine connector. The
second AEH FPGA contains the “scalar processor”, a soft-
core processor that implements the base Convey instruction
set. The scalar processor is a substantial general-purpose

processor architecture and features such as out-of-order
execution, branch predication, register renaming, sliding
register windows, and a virtualized register set. The scalar
processor plays a significant role on the coprocessor because
it is the mechanism by which the host invokes computations
on the AEs. In Convey’s programming model, the AEs act
as coprocessors to the scalar processor as they implement
custom instructions, while the scalar processor acts as
coprocessor for the host CPU.

When using the Convey Personality Development Kit
(PDK), code for the scalar processor is generally written by
hand in Convey’s own scalar processor assembly language.
After assembly, the scalar processor code is linked into the
host executable in a linker section named “ctext”. On
execution, scalar processor routines can be invoked from the
host code by the blocking and non-blocking versions of the
“copcall” API functions.

The scalar processor is connected to each AE via a point-
to-point link, and uses this link to dispatch instructions to the
AEs. Examples of such instructions include move
instructions for exchanging data between scalar processor
registers and AE registers, as well as the custom AE
instructions, a set of 32 “dummy” instructions that can be
used to invoke user-defined behaviors on the AEs. Through
the dispatch interface on the AE, logic on the AEs can also
trigger exceptions and implement memory synchronization
behaviors.

Designing custom personalities requires the use of the
Convey PDK. The PDK is physically comprised of a set of
makefiles to support simulation and synthesis design flows, a
set of Verilog support and interface files, a set of simulation
models for all the non-programmable components of the
coprocessor board (such as the memory controllers and
memory modules), and a PLI-based interface to allow the
host code to interface with a behavioral HDL simulator such
as Modelsim.

Developing with the PDK involves working within a
Convey-supplied wrapper that gives the user logic access to
instruction dispatches from the scalar processor, access to all
eight memory controllers, access to the coprocessor’s
management processor for debugging support, and access to
the AE-to-AE links. However, the wrapper requires fairly
substantial resource overheads: 66 out of the 288 18Kb
BRAMS and approximately 10% of the slices on each
FPGA. Convey supplies a fixed 150 MHz clock to the user
logic on each FPGA.

IV. DATA FORMAT
We designed our SpMV kernels in 8157 lines of hand-

written VHDL. In order to simplify the SpMV controller
design, we use a slightly modified version of the CSR format
in order to eliminate the use of the ptr array. As described
above, the CSR format stores a matrix in three arrays, val,
col, and ptr. val and col contain the value and corresponding
column number for each non-zero value, arranged in a raster
order starting with the upper-left and continuing column-
wise left-to-right and then row-wise from the top to bottom.
The ptr array stores the indexes within val and col where
each row begins, terminated with a value that contains the

3

size of val and col. Instead of using the ptr array, we encode
the end-of-row information within the val and col arrays
using zero termination. Thus, to mark the termination of a
row, we use 0 for both the val and col values. This increases
the length of these arrays by the number of matrix rows and
requires pre-processing of the matrix data. However, for
applications such as iterative system solvers that invoke
SpMV iteratively using an invariant matrix, this
preprocessing step would only be a one-time upfront cost.

V. REDUCTION CIRCUIT DESIGN
Our goal was to develop a floating-point accumulator

suited to double-precision CSR-based SpMV using only one
double-precision floating-point adder coupled to external
buffering and control to dynamically schedule the inputs to
the adder. While designing the accumulator, we make the
following assumptions:

(1) input values are delivered serially, one per cycle,
(2) output order need not match the arrival order of

accumulation sets,
(3) the accumulation sets are contiguous, meaning that

the values from different accumulation sets are not inter-
mixed, and

(4) the size of each accumulation set is variable and is not
known a priori.

As Figure 2 depicts, the general idea is to add both
control logic--in the form of comparators, counters, and
buffers--around a single adder in order to form a dynamically
scheduled accumulator. More specifically, the accumulator
architecture consists of a set of data paths that allow input
values and the adder output to be delivered into the adder or
buffered based on their corresponding accumulation set ID
and the state of the system. In this case, the set ID represents
the matrix row for the purpose of computing a dot product.
Data paths are established by the control unit according to
five basic rules.

A. Data Path Rules
The rules which govern the inputs to the pipeline and

inputs to the buffers are as follows:
Rule 1: Combine the adder output with a buffered value.

Buffer the incoming value.
Rule 2: Combine two buffered values. Buffer the

incoming value. Buffer the adder output (if necessary).
Rule 3: Combine the incoming value with the adder

output.
Rule 4: Combine the incoming value with a buffered

value. Buffer the adder output (if necessary).
Rule 5: Combine the incoming value with 0 to the adder

pipeline. Buffer the adder output (if necessary).
In order to describe the rules in a more concise manner,

we represent the incoming input value to the accumulator as
input.value and input.set, buffer n as bufn.value and
bufn.set, the value emerging from the adder pipeline as
adderOut.value and adderOut.set, the inputs to the adder
pipeline addIn1 and addIn2 and the reduced accumulated
sum as result.value and result.set. Also, we represent the
number of partial sums belonging to set s as numActive(s).

Using this notation, we re-describe the rules below, in
descending order of priority.

Rule 1:
𝑖𝑓∃𝑛: 𝑏𝑢𝑓𝑛. 𝑠𝑒𝑡 = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡. 𝑠𝑒𝑡 𝑡ℎ𝑒𝑛 {
𝑎𝑑𝑑𝐼𝑛1: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡, 𝑎𝑑𝑑𝐼𝑛2: = 𝑏𝑢𝑓𝑛
𝑖𝑓 𝑖𝑛𝑝𝑢𝑡. 𝑣𝑎𝑙𝑖𝑑 𝑡ℎ𝑒𝑛 {𝑏𝑢𝑓𝑛 ≔ 𝑖𝑛𝑝𝑢𝑡}}

Rule 2:

𝑖𝑓∃𝑖, 𝑗: 𝑏𝑢𝑓𝑖 . 𝑠𝑒𝑡 = 𝑏𝑢𝑓𝑗. 𝑠𝑒𝑡 𝑡ℎ𝑒𝑛 {
𝑎𝑑𝑑𝐼𝑛1: = 𝑏𝑢𝑓𝑖, 𝑎𝑑𝑑𝐼𝑛2: = 𝑏𝑢𝑓𝑗

𝑖𝑓 𝑖𝑛𝑝𝑢𝑡. 𝑣𝑎𝑙𝑖𝑑 𝑡ℎ𝑒𝑛 {𝑏𝑢𝑓𝑖: = 𝑖𝑛𝑝𝑢𝑡}
𝑖𝑓𝑛𝑢𝑚𝐴𝑐𝑡𝑖𝑣𝑒(𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡. 𝑠𝑒𝑡) = 1 𝑡ℎ𝑒𝑛{

𝑟𝑒𝑠𝑢𝑙𝑡: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡}
𝑒𝑙𝑠𝑒{𝑏𝑢𝑓𝑗: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡}}

Rule 3:

𝑖𝑓𝑖𝑛𝑝𝑢𝑡. 𝑣𝑎𝑙𝑖𝑑 𝑡ℎ𝑒𝑛 {
𝑖𝑓 𝑖𝑛𝑝𝑢𝑡. 𝑠𝑒𝑡 = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡. 𝑠𝑒𝑡 𝑡ℎ𝑒𝑛{

𝑎𝑑𝑑𝐼𝑛1: = 𝑖𝑛𝑝𝑢𝑡
𝑎𝑑𝑑𝐼𝑛2: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡}}

Figure 2. The accumulator is designed by adding control logic

around the adder pipeline.

Figure 3. Data routing for rules 1 (a) through 5 (e), as well as the

special case for rule 5 (f).

4

Rule 4:
𝑖𝑓 𝑖𝑛𝑝𝑢𝑡. 𝑣𝑎𝑙𝑖𝑑 𝑡ℎ𝑒𝑛 {

𝑖𝑓∃𝑛:𝑏𝑢𝑓𝑛. 𝑠𝑒𝑡 = 𝑖𝑛𝑝𝑢𝑡. 𝑠𝑒𝑡 𝑡ℎ𝑒𝑛 {
𝑎𝑑𝑑𝐼𝑛1: = 𝑖𝑛𝑝𝑢𝑡
𝑎𝑑𝑑𝐼𝑛2: = 𝑏𝑢𝑓𝑛

𝑖𝑓𝑛𝑢𝑚𝐴𝑐𝑡𝑖𝑣𝑒(𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡. 𝑠𝑒𝑡) = 1 𝑡ℎ𝑒𝑛 {
𝑟𝑒𝑠𝑢𝑙𝑡: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡}

𝑒𝑙𝑠𝑒{𝑏𝑢𝑓𝑛: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡}}}

Rule 5:

𝑖𝑓 𝑖𝑛𝑝𝑢𝑡. 𝑣𝑎𝑙𝑖𝑑 𝑡ℎ𝑒𝑛 {
𝑎𝑑𝑑𝐼𝑛1 ≔ 𝑖𝑛𝑝𝑢𝑡
𝑎𝑑𝑑𝐼𝑛2 ≔ 0

𝑖𝑓𝑛𝑢𝑚𝐴𝑐𝑡𝑖𝑣𝑒(𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡. 𝑠𝑒𝑡) = 1 𝑡ℎ𝑒𝑛 {
𝑟𝑒𝑠𝑢𝑙𝑡: = 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡} 𝑒𝑙𝑠𝑒 {
𝑖𝑓 ∃𝑛: 𝑏𝑢𝑓𝑛.𝑣𝑎𝑙𝑖𝑑 = 0 𝑡ℎ𝑒𝑛 {

𝑏𝑢𝑓𝑛 ≔ 𝑎𝑑𝑑𝑒𝑟𝑂𝑢𝑡} 𝑒𝑙𝑠𝑒 {𝑒𝑟𝑟𝑜𝑟}}}
𝑒𝑙𝑠𝑒 {

𝑎𝑑𝑑𝐼𝑛1 ≔ 𝐴𝑑𝑑𝑒𝑟𝑂𝑢𝑡
𝑎𝑑𝑑𝐼𝑛2 ∶= 0}

Figure 3 shows various configurations of the reduction

circuit: (a) the output of the pipeline belongs to the same set
as a buffered value; (b) two buffered values belong to the
same set (c) the incoming value and adder output belong to
the same set; (d) the incoming value and buffered value
belong to the same set; (e) the incoming value does not
match the set of the pipeline output or any of the buffered
values; (f) there’s no incoming value.

B. Tracking Set IDs
As shown in Figure 4, in order to determine when a set

ID has been reduced (accumulated) into a single value, we
use three small dual-ported memories, each with a
corresponding counter connected to the write port. Together,
these memories keep track of the number of active values
belonging to each set ID in each cycle, i.e. numActive().

The write port of each memory is used to increment or
decrement the current value in the corresponding memory
location. The write port of one memory is connected to
input.set and always increments the value associated with
this set ID corresponding to the incoming value.

The write port of the second memory is connected to
adderIn.set and always decrements the value associated with
this set ID whenever two values from this set enter the adder.
This occurs under all rules except for 5, since each of these
rules implement a reduction operation.

The write port of the third memory is connected to
adderOut.set and always decrements the value associated
with this set ID whenever the number of active values for
this set ID reaches one. In other words, this counter is used
to decrement the number of active values for a set at the time
when the set is reduced to single value and subsequently
ejected from the reduction circuit.

The read port of each memory is connected to
adderOut.set, and outputs the current counter value for the

set ID that is currently at the output of the adder. These three
values are added to produce the actual number of active
values for this set ID. When the sum is one, the controller
signals that the set ID has been completely reduced. When
this occurs, the set ID and corresponding sum is output from
the reduction circuit.

C. Double Precision Streaming Multiply-Accumulator
Design
The core of each PE is a double precision streaming

multiply-accumulator (MAC). The MAC consists of the
reduction circuit-based accumulator fed by a double-
precision multiplier.

During initialization, the host provides each PE with a
workload, consisting of an initial row number, a starting
address in the matrix memory, and the total number of values
to multiply. The MAC keeps track of which row is currently
being processed by incrementing the row number each time a
zero termination is read. The MAC includes a FIFO for
buffering incoming products between the multiplier and
accumulator.

D. Processing Element Design
The processing element (PE) design is shown in Figure 5.

It consists of a vector cache, a shifter, the multiply-
accumulator as described above, a controller, and a result
FIFO.

The role of the PE is to load matrix values and stream
them into the multiply-accumulator. In order to achieve
maximum memory bandwidth, the PE must load matrix data
in parallel—across all eight memory interfaces—and
serialize it before streaming it into the multiplier. The HC-
1’s memory interfaces respond to outstanding load requests
in a randomized order. Also, each memory interface is only
capable of addressing one eighth of the address space, and—
due to the way the HC-1 partitions its address space among
the memory controllers—the PE must read at least four
consecutive words from each memory controller in order to
read a contiguous block of addresses from the memory. To
address both of these issues, a small on chip matrix cache is
used to buffer incoming matrix data. A global, 64KB cache
on each AE is subdivided into eight segments (one for each
PE). The cache is organized as 32 x 512 x 32 BRAMs.
Each segment holds 672 matrix values and their
corresponding column number (“val-col pairs”).

Matrix data is read from the cache in blocks of 42 val-col
pairs, loaded in parallel into a shift register, and then each
val-col pair is shifted out serially. Since the matrix cache is
shared among all PEs, only one PE can read from it at any
time. As such, access is arbitrated using fixed priority
according to PE ID number. After each PE has consumed all
sixteen blocks of cached matrix data held for it in the matrix
cache, the PE sends a request signal to the top-level global
memory controller, which then reads a new segment into the
matrix cache. During a cache miss, this line size insures that
there are an equal number of reads from each SGDIMM.

The incoming stream of column numbers is used to index
the input vector to obtain the value to be multiplied with the
matrix value. Many FPGA-based SpMV implementations in

5

the literature assume that a copy of the entire input vector for
each multiplier can be stored chip or use blocking techniques
to perform the SpMV over multiple passes of the input
matrix. Since this architecture is designed for multiplying
large matrices, we assume that the entire input vector will
not fit within on-chip memory for each PE. As such, we
designed a vector cache for each PE to hold a subset of the
input vector. The non-values in many sparse matrices
exhibit spatial locality, as values are often clustered in nearly
columns. To take advantage of this, we implemented the
cache as a traditional four-line direct mapped cache where
each line holds 2048 consecutive double-precision values
from the vector. In total the cache holds 8192 double-
precision values. As with the matrix cache, during a cache
miss there are an equal number of reads from each SGDIMM
on the coprocessor memory.

The vector cache is local to each PE and vector data can
thus be duplicated across the FPGA, depending on how the
workload is distributed among the PEs. The top-level
memory controller can only service one vector miss or
matrix request at any time.

Each time the MAC computes a dot product value, the
value and its corresponding set ID (i.e. row ID) are written
into the PE’s result FIFO. The global memory controller
monitors the state of each PE’s result FIFO and writes any
pending results to coprocessor memory as soon as any
pending matrix or vector requests have completed. The
coprocessor memory address for each write is computed by
adding the set ID, multiplied by eight, to the vector base
address, which is written into all PEs by the host prior to
execution. Result values are written to coprocessor memory

using a fixed priority according to PE ID number. Result
writes are given priority over cache misses, since they
generally only require one cycle to complete while cache
misses take substantially longer to service.

Our top-level design is shown in Figure 6. As shown, the
shared matrix cache, each PE, and the result FIFOs all share
access to the global memory controller. PE requests for
vector and matrix cache misses, as well as result write
requests, are serialized and arbitrated in one pool using a
fixed-priority scheme according to PE ID number.

VI. IMPLEMENTATION ON CONVEY HC-1
In this section we describe specific issues related to our

personality design.

A. Resource Requirements
As described in Section 3, the HC-1 contains four user-

programmable FPGAs called the application engines (AEs).
Each AE has an interface to eight memory controllers and
each memory controller interface has two 64-bit wide ports
on the system clock, corresponding to each clock edge for
the DDR memory.

TABLE I. RESOURCE UTILIZATION

Application
Engine Slices BRAM DSP48E

4 PE per AE 26,055 / 51,840
(50%)

146 / 288
(51%)

48 / 192
(25%)

8 PE per AE 38,225 / 51,840
(73%)

210 / 288
(73%)

96 / 192
(50%)

Figure 6. Top-level design.

Figure 4. Design for tracking the number of active partial sums in an

accumulation set.

Figure 5. PE design.

6

When designing an on-chip cache, in order to take
advantage of all available off-chip memory bandwidth,
enough BRAMs must be instanced to consume 8 * 2 * 64 =
1024 bits in a single clock cycle. At minimum BRAM depth
(512), this yields a minimum of sixteen 512x36 BRAMs for
each vector cache and the matrix cache, requiring 144
BRAMs to support the fully populated (eight PE) AE design.
Since the Convey-designed memory controller interfaces
themselves require an overhead of 66 BRAMs.

Table 1 summarizes the resource usage of our AE design.
As shown, BRAM and slice usage scale almost identically,
while DSP usage is low in comparison.

B. Parallelizing SpMV
We parallelize the SpMV operation as follows. Since all

matrix rows can be processed independently, we assign each
PE an equal workload by dividing the set of matrix rows into
equal-sized sets and distributing each set to the PEs across all
four AEs. To do this, the host sends a matrix base address to
each PE that specifies the starting location in the matrix data,
as well as a starting row number and the number of rows to
process before completion. This requires that matrix rows
may not cross PE boundaries, which we ensure in the host by
inserting zero padding where needed.

VII. GPU SPMV
GPUs have become a popular platform for accelerating

scientific applications, particularly data parallel floating-
point kernels such as computational fluid dynamics [13],
ODE/PDE-based simulation [14], and medical imaging [15].
However, due to the challenges with working with
compressed sparse matrices as described in Section I,
achieving high performance on GPU architectures for CSR-
formatted sparse matrix arithmetic remains an open problem
for which efforts are still in progress by both NVIDIA and
third parties [16, 17

In addition, there is a still a substantial gap between
single and double precision floating point performance, even
on current generation GPUs (although this gap appears to be
closing over subsequent generations of GPU architectures).
According to NVIDIA, there was a 10X performance gap
between single and double precision performance on Tesla
GPUs and a 5X performance gap on Fermi GPUs [

].

18
GPUs have approximately 50% more memory bandwidth

per GPU than the combined memory bandwidth of all four of
the HC-1’s AEs. This gives it an upper performance bound
of near 20 GFLOPS/s. However, as shown in the results, the

GPU achieves substantially lower ratio of this peak
performance than the FPGA architecture.

].

We used NVIDIA’s CUDA CUSPARSE library on a
Tesla S1070 to measure GPU performance of our test
matrices [19

VIII. EXPERIMENTAL RESULTS

]. CUSPARSE supports sparse versions of basic
linear algebra subroutines (BLAS) for a variety of sparse
matrix representations, including CSR. We used
CUSPARSE, as opposed to other third-party CUDA-based
sparse matrix libraries, since CUSPARSE is the official de
facto library endorsed by NVIDIA. Although the Tesla-
S1070 consists of four GPUs, CUSPARSE can only to run
on a single GPU even when multiple GPUs are available to
the host.

We chose a set of test matrices from Matrix Market [20]
and the University of Florida Matrix Collection [21

The test matrices are summarized in Table 2, along with
the corresponding throughput achieved with CUSPARSE
and the HC-1. Throughput is computed as 2*nz / (execution
time), where the execution time is measured without
including transfer time between host memory and
coprocessor memory.

]. We
chose the matrices to cover a wide range of matrix orders,
total number of nonzero entries, and average number of
nonzero values per matrix row (sparseness).

As shown in Table 2, the HC-1 generally outperformed
the Tesla. However, the HC-1’s performance doesn’t scale
well from four PEs/AE to eight PEs/AE, which is caused by
memory interface contention and controller overhead. For
one matrix, dw8192, scaling up the number of PEs slightly
reduced performance.

IX. CONCLUSIONS AND FUTURE WORK
In this paper we described our CSR sparse matrix-vector

multiplier and its implementation on the Convey HC-1
reconfigurable computer. The contributions of this paper
include a new streaming reduction circuit design and an on-
chip memory architecture optimized for CSR-formatted
sparse matrix data. Our results show performance that
exceeds that of the Tesla GPU. While the Tesla is a
previous-generation architecture, so is the Virtex-5 LX
FPGAs on which the HC-1 is based.

In the future, we plan to improve several limitations in
our current design, described below.

(1) At this time, the top-level memory controller is only
capable of servicing a single cache miss at a time. In other
words, each cache miss must wait until the current cache

TABLE II. EXPERIMENTAL RESULTS, NVIDIA CUSPARSE ON TESLA T10 GPU VS. CONVEY HC-1

Matrix Application r * c nz nz/row
CUSPARSE
GFLOPs/s

HC-1 16 PE
GFLOPs/s

HC-1 32 PE
GFLOPs/s

dw8192 Electromagnetics 8192*8192 41746 5.10 0.49 1.71 1.65
t2d_q9 Structural 9801*9801 87025 8.88 0.94 2.07 2.48
epb1 Thermal 14734*14734 95053 6.45 0.80 2.18 2.56
raefsky1 Computational fluid dynamics 3242*3242 294276 90.77 2.59 2.94 3.85
psmigr_2 Economics 3140*3140 540022 171.98 2.83 2.84 3.94
torso2 2D model of a torso 115967*115967 1033473 8.91 3.00 1.06 1.17

7

miss is complete and there is no overlap when servicing
cache misses. References to off-chip coprocessor memory
have long latency but the HC-1 supports a large number of
outstanding requests. As such, it is possible to overlap
requests for multiple cache misses, which would reduce the
miss time.

(2) The HC-1’s memory channels are independently
controlled, and each has an independent request FIFO that
has feedback signals to stall the requestor when the reference
request FIFO becomes full. In our current design, the entire
memory controller stalls when any of the stall signals
becomes asserted. By decoupling the requests going out on
the channels and only stalling the requests on the specific
channels that request a stall, we may be able to further
improve achieved memory throughput.

(3) During startup, several PEs may request identical
cache lines, since the current memory controller does not
support broadcasts to multiple PEs. By implementing
broadcasted vector data requests, we can decrease the
number of duplicated bulk off-chip memory loads.

We also plan to perform a more formal mathematical
characterization of our reduction circuit design in order to
bound the number of required buffers, input FIFO depth,
number of active set counters, counter width, and row ID
width as a function of adder pipeline depth and minimum
accumulation set size.

In addition, there are many design trade-offs that may be
explored for this design. Due to memory contention for the
off-chip memory interfaces by the PEs, it may be possible to
achieve higher performance by instancing fewer PEs but a
higher amount of on-chip vector cache and/or matrix cache
for each PE. Other degrees of freedom include number of
vector cache lines and associativity. We plan to use
modeling techniques to explore this design space to find the
optimal number of PEs versus cache resources to achieve
higher PE utilization across various matrix characteristics.
We also plan to add performance counters to the design in
order to instrument and measure the overheads required by
the memory system. Finally, we plan to extend this design to
support more sparse BLAS routines such as sparse matrix-
matrix multiply.

REFERENCES
[1] Llyod N.Trefetthen and David Bau,III “Numerical Linear Algebra”.

Society for Industrial and Applied Mathematics.
[2] Intel, “Sparse Matrix Storage Formats”,

http://software.intel.com/sites/products/documentation/hpc/mkl/webh
elp/appendices/mkl_appA_SMSF.html

[3] M. deLorimier, A. DeHon, “Floating-point sparse matrix-vector
multiply for FPGAs,” Proc. 13th ACM/SIGDA Symposium on Field-
Programmable Gate Arrays (FPGA 2005).

[4] L. Zhou, V. K. Prasanna, “Sparse Matrix-Vector Multiplication on
FPGAs,” Proc. 13th ACM/SIGDA Symposium on Field-
Programmable Gate Arrays (FPGA 2005).

[5] J. Sun, G. Peterson, O. Storaasli, “Sparse Matrix-Vector
Multiplication Design for FPGAs,” Proc. 15th IEEE International
Symposium on Field Programmable Computing Machines (FCCM
2007).

[6] L.Zhuo, V. K. Prasanna, “High-Performance Reduction Circuits
Using Deeply Pipelined Operators on FPGAs,” IEEE Trans. Parallel
and Dist. Sys., Vol. 18, No. 10, October 2007.

[7] M. Gerards, “Streaming Reduction Circuit for Sparse Matrix Vector
Multiplication in FPGAs”. Master Thesis, University of Twente, The
Netherlands, August 15, 2008.

[8] S. R. Vangal, Y. V. Hoskote, N. Y. Borkar, A. Alvandpour, “A 6.2-
GFlops Floating-Point Multiply-Accumulator With Conditional
Normalization,” IEEE Journal of Solid-State Circuits, Vol. 41, No.
10, Oct. 2006.

[9] Krishna.K. Nagar, Jason D. Bakos, "A High-Performance Double
Precision Accumulator," IEEE International Conference on Field-
Programmable Technology, Dec. 9-11, 2009.

[10] Nallatech, "Intel Xeon FSB FPGA Accelerator Module,"
http://www.nallatech.com/Intel-Xeon-FSB-Socket-Fillers/fsb-
development-systems.html.

[11] DRC Computer, "DRC Reconfigurable Processor Units (RPU),"
http://www.drccomputer.com/drc/modules.html.

[12] XtremeData Inc., "XD2000i™ FPGA In-Socket Accelerator for Intel
FSB," http://www.xtremedata.com/products/accelerators/in-socket-
accelerator/xd2000i.

[13] A. Antoniou et al, "Acceleration of a Finite-Difference WENO
Scheme for Large-Scale Simulations on Many-Core Architectures".
48th AIAA Aerospace Sciences Meeting, Orlando, Florida, January
2010.

[14] D. Sato et al, "Acceleration of cardiac tissue simulation with graphic
processing units,". Medical and Biological Engineering and
Computing, Volume 47, Number 9, 1011-1015, DOI:
10.1007/s11517-009-0514-4.

[15] M Roberts et al, "A Work-Effcient GPU Algorithm for Level Set
Segmentation". Proc SIGGRAPH '10, ACM Special Interest Group
on Computer Graphics and Interactive Techniques, July 2010.

[16] M. M. Baskaran; R. Bordawekar, "Optimizing Sparse Matrix-Vector
Multiplication on GPUs," IBM Technical Report RC24704. 2008.

[17] N. Bell and M. Garland, “Implementing Sparse Matrix-Vector
Multiplication on Throughput-Oriented Processor”. Proc.
Supercomputing '09 (SC09), November 2009.

[18] NVIDIA Corportation, “Whitepaper: NVIDIA’ s Next Generation
CUDA Compute Architecture: Fermi,”
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_F
ermi_Compute_Architecture_Whitepaper.pdf.

[19] NVIDIA Corportation, “CUSPARSE User Guide - CUDE
CUSPARSE Library. PG-05329-032_V01”. August 2010.

[20] Matrix Market, http://math.nist.gov/MatrixMarket.
[21] The University of Florida Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices.
.

8

