

TABLE I. PERFORMANCE RESULTS FOR STATIC SCHEDULER
(X=Y=Z=256)

Reorder
buffer

Convey Proposed Proposed Proposed

OIC Kernel Consec. Consec. Consec.
OIK Kernel Kernel Kernel Kernel

Block size 1 85 17 8
Efficiency 67% 13% 89% 89%

Memory Access Scheduling on the Convey HC-1

Zheming Jin
Dept. of Computer Science and Engineering

University of South Carolina
Columbia, SC USA
jinz@email.sc.edu

Jason D. Bakos
Dept. of Computer Science and Engineering

University of South Carolina
Columbia, SC USA
jbakos@cse.sc.edu

Abstract—In this paper we describe a technique for
scheduling memory accesses to improve effective memory
bandwidth on the Convey HC-1 platform.

In general, when performing a series of accesses to a
multibank DRAM, the latencies experienced by the
requests may be non-uniform and depend on the pattern of
access addresses. This is due to timing requirements of the
individual DRAM banks and the memory controller’s
ability to overlap accesses to different banks. The memory
controller on the Convey HC-x coprocessor attempts to
hide the latency of DRAM accesses by supporting
hundreds of inflight memory requests and reordering them
in order to move requests to idle banks ahead of requests
that are waiting on busy banks. This causes load requests
to be returned to the user logic in a different order than
originally requested. In addition, the memory controller
will stall the user logic’s ability to make further memory
requests whenever the number of outstanding memory
requests exceeds the size of the controller’s internal
request tracking table. This backlogging occurs when
Convey’s scheduler fails to hide all the request latencies,
either due to some type of limitation in Convey’s memory
scheduler (which is unspecified since Convey doesn’t
disclose the design of their memory controller) or caused
by the kernel design not uniformly distributing its requests
over all available banks.

For memory-bound kernels, the user logic will attempt
to access memory on every clock cycle. Any cycle where
the logic does not read memory is either due to
inefficiency in the kernel’s memory interface or due to a
stall request from Convey’s memory controller. We
compute memory efficiency as: efficiency = ac / ec,
where ac = number of access cycles and ec = number of
observed execution cycles. The number of observed
execution cycles includes both the stall cycles requested
by the Convey memory controller and the memory access
cycles. Our objective is to develop a general purpose
kernel memory interface for memory-bound kernels that
have a regular access pattern. Our interface reorders the
memory references between the user logic and the Convey
memory controller. Since the Convey memory controller
itself will again reorder the references, our memory
interface will buffer the returned data and return it to the
user logic in the order that it expects. In other words, we
consider three behavioral entities, the kernel (K), Convey’s

memory controller (C), and our proposed kernel memory
interface (I). There are also three memory access
orderings: (1) load requests from the interface to memory
controller (OIC), (2) returned data from controller to
interface (OCI), and returned input data from the interface
to kernel (OIK). OIC should be optimized for the memory
controller, OCI will be determined by the memory
controller (and outside our control), and OIK should be
optimized for the kernel logic. The objective of our
proposed interface is to: (1) request the kernel’s input data
from the memory controller in an order that maximizes
effective memory bandwidth (which in general is from
consecutive addresses, if possible), and (2) buffer the
returned data from the controller and send it to the kernel
in an order that is optimized for the kernel design.

As a representative kernel, we consider a six-point 3D
stencil kernel. We assume that the kernel is fully pipelined
and can accept incoming data at the memory’s peak
throughput, one word per cycle. We assume that the
kernel calculates the value of each cell of a 3D space as a
function of the values in the cell above, below, to the left,
to the right, in front, and behind of the cell whose value is
being computed. The kernel expects these input values to
arrive at its input ports in consecutive cycles but these
values are not stored in consecutive locations in memory.
Thus without the proposed interface, all input values
would be read from nonconsecutive memory locations and
result in poor memory efficiency. In our proposed
approach, we designed an address generator that requests
data from the memory controller in consecutive order
(OIC). Then, we modified Convey’s own memory
response reorder buffer to buffer the returned values (in
the order OCI), and send them to the kernel in the order that
they are expected (OIK). Table I shows our results for a
512-entry buffer using a block size of 85, 17, and 8. Using
this technique we demonstrate a 33% improvement in
effective memory bandwidth.

2013 21st Annual International IEEE Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4969-9/13 $26.00 © 2013 IEEE

DOI 10.1109/FCCM.2013.55

237

