
Two-Hit Filter Synthesis for Genomic Database Search

Jordan A. Bradshaw, Rasha Karakchi, Jason D. Bakos
Department of Computer Science

University of South Carolina
Columbia, SC USA

Email: bradshja@email.sc.edu, karakchi@email.sc.edu, jbakos@cse.sc.edu

Abstract—Advancements in genomic sequencing technology is
causing genomic database growth to outpace Moore’s Law. This
continues to make genomic database search a difficult problem
and a popular target for emerging processing technologies. The
de facto software tool for genomic database search is NCBI
BLAST, which operates by transforming each database query into
a filter that is subsequently applied to the database. This requires
a database scan for every query, fundamentally limiting its
performance by I/O bandwidth. In this paper we present a
functionally-equivalent variation on the NCBI BLAST algorithm
that maps more suitably to an FPGA implementation. This
variation of the algorithm attempts to reduce the I/O requirement
by leveraging FPGA-specific capabilities, such as high pattern
matching throughput and explicit on chip memory structure and
allocation. Our algorithm transforms the database—not the
query—into a filter that is stored as a hierarchical arrangement of
three tables, the first two of which are stored on chip and the third
off chip. Our results show that—while performance is data
dependent—it is possible to achieve speedups of up to 8X based on
the relative reduction in I/O of our approach versus that of NCBI
BLAST. More importantly, the performance relative to NCBI
BLAST improves with larger databases and query workload sizes.

Keywords—reconfigurable computing, heterogeneous
computing, FPGA, BLAST, approximate string matching, regular
expression, pattern matching, high-performance computing,
sequence alignment, automata processor, database search,
computational biology, bioinformatics, comparative genomics,
genomic analysis

I. INTRODUCTION
Many tasks in genomic sequence comparison rely on

approximate string matching based on assigning biologically-
significant scores to specific aspects of dissimilarity (or “edits”)
between two character strings. Dynamic programming methods
such as the well-known Smith-Waterman [1] and Needleman-
Wunsch [2] algorithms are optimal but their quadratic memory
requirement makes them too expensive to match each query
against the entire database. NCBI BLAST (Basic Local
Alignment Search Tool) [3] addresses this problem by
identifying a subset of the database that contains likely matches,
to which it later applies Smith-Waterman.

NCBI BLASTP (protein BLAST), the focus of our work,
requires, as input, a character substitution matrix S(a,b) and a
threshold. Using these, it generates a list of n-character strings
called seeds (for BLASTP, typically n = 3) whose “self-score”
(score when aligned against an exact match of itself) meets or
exceeds the given threshold. BLAST then identifies exact or
approximate matches of these in both the query and database.
These are called hits. BLAST marks any pair of hits comprised
of the same two seeds separated by the same relatively small
number of intervening characters in both query and database as

a high scoring pair (HSP) on the same diagonal. For each of
these, BLAST extends the HSP by incorporating an increasing
number of the HSP’s neighboring characters until the slope of
the running score becomes negative. At this point, if the
expectation value, computed as a function of the score, is
sufficiently low, BLAST performs a Smith-Waterman
alignment between the query and the corresponding database
entry.

NCBI BLASTP and each of its recent FPGA
implementations need to scan the entire database for every
query, making each query I/O bound (or memory bound if the
databases can fit entirely in RAM) [4,5,6]. As such, our
approach to BLAST acceleration is to reduce the I/O
requirement. Specifically, our contribution is a hardware-
centric approach for designing the two-hit filter, which operates
by combining hit detection and two-hit filtering as a single
hardware operation. To do this, we transform the database into
a set of high scoring pairs (HSPs) and store it as a hierarchical
series of indexed tables. The first on-chip table is the HSP Suffix
Table and stores the set of valid HSPs relative to the substitution
matrix and threshold. The second on-chip table is the HSP Table
of Contents, which matches each HSP to a location in a larger
off-chip database called the HSP Index Table. The HSP Index
Table maps HSPs and lengths to the original database.
Together, these tables allow the FPGA to accept a batch of
queries and convert each into a corresponding subset of the
original database against which to align using Smith-Waterman.
These tables can reasonably fit in larger FPGA devices [7].

II. RELATED WORK
As far as the authors know, the state-of-the-art in FPGA-

based BLAST is embodied by CAAD BLAST, the most recent
of a lineage of FPGA BLAST implementations from Herbordt’s
team from Boston University [8]. CAAD BLAST is
implemented across four Virtex-6 LX760 FPGAs. The
coprocessor comprises three filter stages, including the two-hit
filter (the focus of our proposed approach), the extended
ungapped alignment, and Smith-Waterman. As in NCBI
BLASTP, the filters are constructed using each query—as
opposed to the database as in our proposed approach—and
subsequently used to filter the database. These filters must be
reconstructed and the database scanned for every query. In order
to maximize throughput, the filters are replicated multiple times
and the database is partitioned such that one element from each
database partition is read per cycle. Despite being implemented
in custom hardware, CAAD BLAST incorporates many of the
same design decisions as NCBI BLAST. For example, its two-
hit filter is implemented using a table structure that is identical
to NCBI BLAST, comprised of 25n rows (where n = seed size)
and three columns (i.e. each entry holds up to three occurrences

This material is based upon work supported by the National Science Foundation under Grant No. 1421059.

2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-5090-2356-1/16 $31.00 © 2016 IEEE

DOI 10.1109/FCCM.2016.24

52

2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-5090-2356-1/16 $31.00 © 2016 IEEE

DOI 10.1109/FCCM.2016.24

52

of the corresponding seed in the query and a secondary table
holds additional entries). As the database characters are
streamed into its pipeline, the design references the table row
corresponding to the n most recent characters. When a hit is
detected, a counter activates to determine the number of cycles
that elapse between hits. The entire system achieves a speedup
of up to 11X vs. CPU, which is impressive when considering
that the FPGAs have only 3X the memory bandwidth of a CPU.

III. APPROACH
Figure 1 shows the data flow of our overall approach. The

design on the FPGA begins by identifying all the valid HSPs in
each query. For each of these “query HSP hits”, the design uses
a secondary table to find the corresponding offset and length of
its section in the off-chip HSP Index Table. This provides a list
of the corresponding “database HSP hits”, a list of pointers to
each of the original database entries that contain the HSP with
its corresponding length. Each query HSP and database HSP
having the same length is returned as output from the FPGA to
the host for downstream processing (extension filter and
potentially Smith-Waterman).

This approach is more amenable for FPGA implementation
because (1) there is no need to re-initialize filter tables for each
query to provide higher throughout for batched queries, (2) it
reduces the I/O requirement, in which the kernel needs only to
read a subset of the database for each query (at the cost of
needing to read the HSP Index File), and (3) it exposes fine grain
parallelism in the HSP matching stage.

A. Database Preprocessing
The first step is to determine how many of the 25n n-mers

have a self-score that meets the given threshold. The self-score
is calculated as � ����� ���

	
� where s is the seed and S() is the

substitution matrix. Each seed has a corresponding set of non-
matching n-mers that, when scored against the original seed,
give a score that still meets the threshold, i.e. � �����
��

	
� , where

di is the potential substitution. The resulting set of seeds are
matched against the database. Any pair of hits on the same

database sequence that occur within 40 characters are combined
to form a high scoring pair (HSP). In this case, the first and
second seed hits represent the beginning and end—or prefix and
suffix—of the HSP candidate. Using three-character seeds
produces too large a table so we reduce the seed size to two-
characters, e.g. AB,DE (requires a threshold adjustment of -2).

The preprocessing step then scans the database to identify
each occurrence of each of these HSPs having a matching length
of no more than 44 and having a minimum self-score value of
�	

�
, where T is the seed threshold and n is the length of the HSP.

Each of these matches and corresponding length is stored in the
HSP Index File with a reference back to the corresponding
database entry and offset. Each HSP may have multiple hits,
and may hit across multiple records.

B. Runtime Behavior
Figure 1 depicts the runtime behavior. For each query, the

design on the FPGA generates a set of query HSP hits,
comprised of a two-character prefix and two-character suffix.
Using these, the design indexes a table of contents, which stores
the corresponding offset and length of the HSP’s section in the
HSP Index File. For each HSP the HSP Index File returns a list
of corresponding database hits. Each of these points to database
entry and match length. Each of these whose length matches the
query hit is returned to the host as output.

Our profiling shows that the subsequent execution time of
the extension filter is negligible as compared to the time required
to access the sequence from the disk. Consequently, nearly all
of NCBI BLAST’s execution time is spent in the seeding and
two-hit filtering stages, which themselves are dominated by I/O
[9].

To characterize the growth of the HSP Index File we
generated HSP Index Tables for subsets of popular, widely-cited
biological protein databases of various sizes (NR [10] and
Uniref [11]). Our results show that the file is approximately 10x
larger than the input database and does not vary significantly
with the input data.

Fig. 1. Overall approach. The database is preprocessed to produce the HSP Suffix Table, Table of Contents, and HSP Index Table. The design filters queries

through these three tables to produce a set of potential database matches. Each of these are aligned in the traditional way, but the execution time of
BLAST is dominated by the first two filter stages implemented by these tables.

5353

C. Filter Architecture
As shown in Figure 1, the accelerator hardware converts

each query into a set of database matches, where each database
match corresponds to a matching HSP of the same total length
between the query and database entry.

The most substantial component of the accelerator design is
the query processor that generates the set of corresponding HSP
hits for each query. Each HSP hit is comprised of a prefix-suffix
pair, total HSP length, query ID, and query offset. Each query
processor contains one HSP Suffix Table and 42 processing
elements (PEs). The HSP Suffix Table provides a 1024-bit
value that represents the valid suffixes for each pair of
consecutive characters reach. Each PE can track only one HSP
at a time, but it contains a sufficient number of PEs to hide the
worst case latency of the PE (the maximum length of an HSP).
This way it is not necessary to stall the query processor until the
output buffer becomes full.

Whenever a PE becomes available, it latches the most
recently-received pair of input characters as a prefix, latches its
corresponding set of valid suffixes (as a bit vector), and then
activates a counter. Each subsequent two-character sequence is
decoded into a bit array that bit-wise AND’ed with the suffix bit
vector. Any one-bits within the output of the AND operation
marks an HSP hit. Any HSP hits that occur before the counter
reaches 40 are reported. The matching suffix is generated using
an encoder on the output of the AND-operation. Another
counter tracks the offset into the query, allowing both counters
provide the offset and length for each detected HSP. When
synthesized and implemented on a Xilinx Zynq 7020, one query
processor requires 31258/5320 (58.8%) slice LUTs.

The design produces the final list of database HSP hits by
cross referencing the query hits with the HSP Index File. The
query hits are sorted by HSP ID and length, allowing the design
to read all of the relevant database hits from the HSP Index File
using a minimum number of accesses.

To minimize I/O back to the host, the design returns a set of
a query hits that match each database entry returned. Each query
hit includes the offset between query hit and database hit. Each
diagonal is passed to the extension and alignment stage.

IV. EXPERIMENTAL RESULTS

A. I/O Overhead
The throughput of our design is bounded by I/O, which is

comprised of transfers from the database and the HSP Index
File. To characterize overall speedup, we first must measure the
I/O requirements of accessing the HSP Index File and compare
it to the overall database size.

Figure 2 shows the number of bytes read from the HSP Index
File as a function of the number of query characters processed
when we perform searches of 20-100 queries randomly selected
from the NR database using the first 200K records of the NR
database as the search space. The bytes read follow a linear
relationship with the number of query characters. About 75MB
is read for 100 queries (about 37K query characters), compared
to the full database size of about 800MB.

Figure 3 shows the total number of database records read as
a function of the number of query characters processed, using
the first 200K records of the NR database. The application need
only read database records if there is an HSP from the HSP Index
File corresponding to it from at least one query. Because it
quickly converges to the database size, it is advantageous to
batch queries into the largest batch allowed by the HSP buffer
in order to minimize the frequency of repeated reads from the
database.

B. Word Finder Speedup
State-of-the-art FPGA-based BLAST implementations must

re-read the entire database to rebuild the filters for each query.
Our proposed approach read hits from the HSP Index File, and
at most, reads each database entry once per batch of queries.

We calculate the speedup of our approach using a
technology-independent approach, where we assume that I/O is
the performance bottleneck and that the HSP Index File and
database are stored in a memory or disk having the same
effective bandwidth. We estimate speedup relative to current
NCBI BLAST algorithm as follows:

�
��
�
 � �
��������
�������� � ��������
�� !	"�#

$�%&��'(���) *���+����(,�

Figure 4 plots the resulting speedup versus query workload,.
This follows from our results that show that each query requires
reading less than the full database’s size from the HSP Index
File.

C. Overall Speedup
To estimate whole-application speedup, we must consider

the relative time spent in the word finder component of BLAST
vs. the full execution time. Our experiments show that the word
finder requires a varying amount of overall execution time that
increases with the size of the database being searched, ranging
from 75% for 20 queries against a 200K record database up to
93% for the same 20 queries against a 1M record database.

Figure 5 shows our projected overall speedups for databases
ranging from 200K records to 1M records, assuming that word
finder speedup is a function of I/O reduction and that overall
speedup is limited by the relative time spent in the word finder.

V. CONCLUSIONS
In this paper we describe a new algorithm for BLAST that is

more amenable to FPGA acceleration than NCBI BLAST. We
show that this algorithm can substantial reduce the I/O
requirement when assuming that the HSP finder can operate on
the FPGA with zero time overhead and when the HSP Suffix
table and Table of Contents tables can fit within FPGA memory.
In future work we will analyze the impact of query batching on
a deployed system.

REFERENCES
[1] Temple F. Smith, Michael S. Waterman, “Identification of Common

Molecular Subsequences,” Journal of Molecular Biology 147: 195–197,
1981, doi:10.1016/0022-2836(81)90087-5.

[2] Saul B. Needleman, Christian D. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of two
proteins,” Journal of Molecular Biology 48 (3): 443–53.
doi:10.1016/0022-2836(70)90057-4, 1970.

5454

[3] S. F. Altschul, W. Gish, W. Miller, E.W. Myers, D. Journal Lipman,
“Basic local alignment search tool,” Journal of Molecular Biology, 215
(190), 403-410.

[4] Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui
Zhang, Zheng Zhang, Webb Miller, and David J. Lipman, “Gapped
BLAST and PSI-BLAST: a new generation of protein database search
programs,” Nucleic Acids Research, 1997, Vol. 25, No. 17, 3389–3402.

[5] Xinyu Guo, Hong Wang, Vijay Devabhaktuni, "A Systolic Array-Based
FPGA Parallel Architecture for the BLAST Algorithm," ISRN
Bioinformatics Volume 2012, Article ID 195658,
doi:10.5402/2012/195658.

[6] Cameron, Michael, Hugh E. Williams, and Adam Cannane. “A
deterministic finite automaton for faster protein hit detection in
BLAST,” Journal of Computational Biology 13.4 (2006): 965-978.

[7] Xilinx UltraScale+ FPGA Product Tables and Product Selection Guide,
http://www.xilinx.com/support/documentation/selection-
guides/ultrascale-plus-fpga-product-selection-guide.pdf, retrieved Sept.
2015.

[8] Atabak Mahram, Martin C. Herbordt, "NCBI BLASTP on High-
Performance Reconfigurable Computing Systems," Transactions on
Reconfigurable Technology and Systems (TRETS), Volume 7 Issue 4,
2015.

[9] Muriki, Krishna, Keith D. Underwood, and Ron Sass. "RC-BLAST:
Towards a portable, cost-effective open source hardware
implementation," Proc. 19th IEEE International Parallel and Distributed
Processing Symposium 2005.

[10] NR Database, available from http://nih.gov.

[11] Uniref100 Database, available from http://www.uniprot.org/downloads.

Fig. 2. HSP Index File bytes read as a function of query characters,

using the first 200K records from NR as the processed
database.

6449 13289 20124 27048 36789
0

10

20

30

40

50

60

70

80

HSP Index File Bytes Read vs. Query Characters

Query Characters

By
te

s
R

ea
d

(M
B)

Fig. 4. Word Finder Speedup as a function of queries, using the first

200K records from NR as the processed database.

20 40 60 80 100
0

10

20

30

40

50

60

Word Finder Speedup vs. Queries

Queries

Sp
ee

du
p

Fig. 5. Overall speedup as a function of database size, using 20

randomly selected queries from the NR database.

200K 400K 600K 800K 1M
4

4.5

5

5.5

6

6.5

7

7.5

8

Speedup vs. Database Size

Database Size

Sp
ee

du
p

Fig. 3. Database records read as a function of query characters, using

a 200K record database.

6449 13289 20124 27048 36789
155000

160000

165000

170000

175000

180000

185000

190000

195000

200000

Database Records Read vs. Query Characters

Query Characters

D
at

ab
as

e
R

ec
or

ds
 R

ea
d

5555

