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Abstract—Advancements in genomic sequencing technology is 
causing genomic database growth to outpace Moore’s Law.  This 
continues to make genomic database search a difficult problem 
and a popular target for emerging processing technologies.  The 
de facto software tool for genomic database search is NCBI 
BLAST, which operates by transforming each database query into 
a filter that is subsequently applied to the database.  This requires 
a database scan for every query, fundamentally limiting its 
performance by I/O bandwidth.  In this paper we present a 
functionally-equivalent variation on the NCBI BLAST algorithm 
that maps more suitably to an FPGA implementation.  This 
variation of the algorithm attempts to reduce the I/O requirement 
by leveraging FPGA-specific capabilities, such as high pattern 
matching throughput and explicit on chip memory structure and 
allocation.  Our algorithm transforms the database—not the 
query—into a filter that is stored as a hierarchical arrangement of 
three tables, the first two of which are stored on chip and the third 
off chip.  Our results show that—while performance is data 
dependent—it is possible to achieve speedups of up to 8X based on 
the relative reduction in I/O of our approach versus that of NCBI 
BLAST.  More importantly, the performance relative to NCBI 
BLAST improves with larger databases and query workload sizes. 

Keywords—reconfigurable computing, heterogeneous 
computing, FPGA, BLAST, approximate string matching, regular 
expression, pattern matching, high-performance computing, 
sequence alignment, automata processor, database search, 
computational biology, bioinformatics, comparative genomics, 
genomic analysis 

I. INTRODUCTION 
Many tasks in genomic sequence comparison rely on 

approximate string matching based on assigning biologically-
significant scores to specific aspects of dissimilarity (or “edits”) 
between two character strings.  Dynamic programming methods 
such as the well-known Smith-Waterman [1] and Needleman-
Wunsch [2] algorithms are optimal but their quadratic memory 
requirement makes them too expensive to match each query 
against the entire database.  NCBI BLAST (Basic Local 
Alignment Search Tool) [3] addresses this problem by 
identifying a subset of the database that contains likely matches, 
to which it later applies Smith-Waterman. 

NCBI BLASTP (protein BLAST), the focus of our work, 
requires, as input, a character substitution matrix S(a,b) and a 
threshold.  Using these, it generates a list of n-character strings 
called seeds (for BLASTP, typically n = 3) whose “self-score” 
(score when aligned against an exact match of itself) meets or 
exceeds the given threshold.  BLAST then identifies exact or 
approximate matches of these in both the query and database.  
These are called hits.  BLAST marks any pair of hits comprised 
of the same two seeds separated by the same relatively small 
number of intervening characters in both query and database as 

a high scoring pair (HSP) on the same diagonal.  For each of 
these, BLAST extends the HSP by incorporating an increasing 
number of the HSP’s neighboring characters until the slope of 
the running score becomes negative.  At this point, if the 
expectation value, computed as a function of the score, is 
sufficiently low, BLAST performs a Smith-Waterman 
alignment between the query and the corresponding database 
entry. 

NCBI BLASTP and each of its recent FPGA 
implementations need to scan the entire database for every 
query, making each query I/O bound (or memory bound if the 
databases can fit entirely in RAM) [4,5,6].  As such, our 
approach to BLAST acceleration is to reduce the I/O 
requirement.  Specifically, our contribution is a hardware-
centric approach for designing the two-hit filter, which operates 
by combining hit detection and two-hit filtering as a single 
hardware operation.  To do this, we transform the database into 
a set of high scoring pairs (HSPs) and store it as a hierarchical 
series of indexed tables.  The first on-chip table is the HSP Suffix 
Table and stores the set of valid HSPs relative to the substitution 
matrix and threshold.  The second on-chip table is the HSP Table 
of Contents, which matches each HSP to a location in a larger 
off-chip database called the HSP Index Table.  The HSP Index 
Table maps HSPs and lengths to the original database.  
Together, these tables allow the FPGA to accept a batch of 
queries and convert each into a corresponding subset of the 
original database against which to align using Smith-Waterman.  
These tables can reasonably fit in larger FPGA devices [7]. 

II. RELATED WORK 
As far as the authors know, the state-of-the-art in FPGA-

based BLAST is embodied by CAAD BLAST, the most recent 
of a lineage of FPGA BLAST implementations from Herbordt’s 
team from Boston University [8].  CAAD BLAST is 
implemented across four Virtex-6 LX760 FPGAs.  The 
coprocessor comprises three filter stages, including the two-hit 
filter (the focus of our proposed approach), the extended 
ungapped alignment, and Smith-Waterman.  As in NCBI 
BLASTP, the filters are constructed using each query—as 
opposed to the database as in our proposed approach—and 
subsequently used to filter the database.  These filters must be 
reconstructed and the database scanned for every query.  In order 
to maximize throughput, the filters are replicated multiple times 
and the database is partitioned such that one element from each 
database partition is read per cycle.  Despite being implemented 
in custom hardware, CAAD BLAST incorporates many of the 
same design decisions as NCBI BLAST.  For example, its two-
hit filter is implemented using a table structure that is identical 
to NCBI BLAST, comprised of 25n rows (where n = seed size) 
and three columns (i.e. each entry holds up to three occurrences 
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of the corresponding seed in the query and a secondary table 
holds additional entries).  As the database characters are 
streamed into its pipeline, the design references the table row 
corresponding to the n most recent characters.  When a hit is 
detected, a counter activates to determine the number of cycles 
that elapse between hits.  The entire system achieves a speedup 
of up to 11X vs. CPU, which is impressive when considering 
that the FPGAs have only 3X the memory bandwidth of a CPU. 

III. APPROACH 
Figure 1 shows the data flow of our overall approach.  The 

design on the FPGA begins by identifying all the valid HSPs in 
each query.  For each of these “query HSP hits”, the design uses 
a secondary table to find the corresponding offset and length of 
its section in the off-chip HSP Index Table.  This provides a list 
of the corresponding “database HSP hits”, a list of pointers to 
each of the original database entries that contain the HSP with 
its corresponding length.  Each query HSP and database HSP 
having the same length is returned as output from the FPGA to 
the host for downstream processing (extension filter and 
potentially Smith-Waterman).  

This approach is more amenable for FPGA implementation 
because (1) there is no need to re-initialize filter tables for each 
query to provide higher throughout for batched queries, (2) it 
reduces the I/O requirement, in which the kernel needs only to 
read a subset of the database for each query (at the cost of 
needing to read the HSP Index File), and (3) it exposes fine grain 
parallelism in the HSP matching stage. 

A. Database Preprocessing 
The first step is to determine how many of the 25n n-mers 

have a self-score that meets the given threshold.  The self-score 
is calculated as � ����� ���

	
�  where s is the seed and S() is the 

substitution matrix.  Each seed has a corresponding set of non-
matching n-mers that, when scored against the original seed, 
give a score that still meets the threshold, i.e. � ����� 
��

	
� , where 

di is the potential substitution.  The resulting set of seeds are 
matched against the database.  Any pair of hits on the same 

database sequence that occur within 40 characters are combined 
to form a high scoring pair (HSP).  In this case, the first and 
second seed hits represent the beginning and end—or prefix and 
suffix—of the HSP candidate.  Using three-character seeds 
produces too large a table so we reduce the seed size to two-
characters, e.g. AB,DE (requires a threshold adjustment of -2). 

The preprocessing step then scans the database to identify 
each occurrence of each of these HSPs having a matching length 
of no more than 44 and having a minimum self-score value of 
�	

�
, where T is the seed threshold and n is the length of the HSP.  

Each of these matches and corresponding length is stored in the 
HSP Index File with a reference back to the corresponding 
database entry and offset.  Each HSP may have multiple hits, 
and may hit across multiple records. 

B. Runtime Behavior 
Figure 1 depicts the runtime behavior.  For each query, the 

design on the FPGA generates a set of query HSP hits, 
comprised of a two-character prefix and two-character suffix.  
Using these, the design indexes a table of contents, which stores 
the corresponding offset and length of the HSP’s section in the 
HSP Index File.  For each HSP the HSP Index File returns a list 
of corresponding database hits.  Each of these points to database 
entry and match length.  Each of these whose length matches the 
query hit is returned to the host as output. 

Our profiling shows that the subsequent execution time of 
the extension filter is negligible as compared to the time required 
to access the sequence from the disk.  Consequently, nearly all 
of NCBI BLAST’s execution time is spent in the seeding and 
two-hit filtering stages, which themselves are dominated by I/O 
[9]. 

To characterize the growth of the HSP Index File we 
generated HSP Index Tables for subsets of popular, widely-cited 
biological protein databases of various sizes (NR [10] and 
Uniref [11]).  Our results show that the file is approximately 10x 
larger than the input database and does not vary significantly 
with the input data. 

 
Fig. 1. Overall approach.  The database is preprocessed to produce the HSP Suffix Table, Table of Contents, and HSP Index Table.  The design filters queries 

through these three tables to produce a set of potential database matches.  Each of these are aligned in the traditional way, but the execution time of 
BLAST is dominated by the first two filter stages implemented by these tables. 
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C. Filter Architecture 
As shown in Figure 1, the accelerator hardware converts 

each query into a set of database matches, where each database 
match corresponds to a matching HSP of the same total length 
between the query and database entry. 

The most substantial component of the accelerator design is 
the query processor that generates the set of corresponding HSP 
hits for each query.  Each HSP hit is comprised of a prefix-suffix 
pair, total HSP length, query ID, and query offset.  Each query 
processor contains one HSP Suffix Table and 42 processing 
elements (PEs).  The HSP Suffix Table provides a 1024-bit 
value that represents the valid suffixes for each pair of 
consecutive characters reach.  Each PE can track only one HSP 
at a time, but it contains a sufficient number of PEs to hide the 
worst case latency of the PE (the maximum length of an HSP).  
This way it is not necessary to stall the query processor until the 
output buffer becomes full. 

Whenever a PE becomes available, it latches the most 
recently-received pair of input characters as a prefix, latches its 
corresponding set of valid suffixes (as a bit vector), and then 
activates a counter.  Each subsequent two-character sequence is 
decoded into a bit array that bit-wise AND’ed with the suffix bit 
vector.  Any one-bits within the output of the AND operation 
marks an HSP hit.  Any HSP hits that occur before the counter 
reaches 40 are reported.  The matching suffix is generated using 
an encoder on the output of the AND-operation.  Another 
counter tracks the offset into the query, allowing both counters 
provide the offset and length for each detected HSP.  When 
synthesized and implemented on a Xilinx Zynq 7020, one query 
processor requires 31258/5320 (58.8%) slice LUTs. 

The design produces the final list of database HSP hits by 
cross referencing the query hits with the HSP Index File.  The 
query hits are sorted by HSP ID and length, allowing the design 
to read all of the relevant database hits from the HSP Index File 
using a minimum number of accesses. 

To minimize I/O back to the host, the design returns a set of 
a query hits that match each database entry returned.  Each query 
hit includes the offset between query hit and database hit.  Each 
diagonal is passed to the extension and alignment stage. 

IV. EXPERIMENTAL RESULTS 

A. I/O Overhead 
The throughput of our design is bounded by I/O, which is 

comprised of transfers from the database and the HSP Index 
File.  To characterize overall speedup, we first must measure the 
I/O requirements of accessing the HSP Index File and compare 
it to the overall database size. 

Figure 2 shows the number of bytes read from the HSP Index 
File as a function of the number of query characters processed 
when we perform searches of 20-100 queries randomly selected 
from the NR database using the first 200K records of the NR 
database as the search space.  The bytes read follow a linear 
relationship with the number of query characters.  About 75MB 
is read for 100 queries (about 37K query characters), compared 
to the full database size of about 800MB. 

Figure 3 shows the total number of database records read as 
a function of the number of query characters processed, using 
the first 200K records of the NR database.  The application need 
only read database records if there is an HSP from the HSP Index 
File corresponding to it from at least one query.  Because it 
quickly converges to the database size, it is advantageous to 
batch queries into the largest batch allowed by the HSP buffer 
in order to minimize the frequency of repeated reads from the 
database. 

B. Word Finder Speedup 
State-of-the-art FPGA-based BLAST implementations must 

re-read the entire database to rebuild the filters for each query.  
Our proposed approach read hits from the HSP Index File, and 
at most, reads each database entry once per batch of queries. 

We calculate the speedup of our approach using a 
technology-independent approach, where we assume that I/O is 
the performance bottleneck and that the HSP Index File and 
database are stored in a memory or disk having the same 
effective bandwidth.  We estimate speedup relative to current 
NCBI BLAST algorithm as follows: 

�
��
�
 � �
��������
�������� � ��������
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Figure 4 plots the resulting speedup versus query workload,.  
This follows from our results that show that each query requires 
reading less than the full database’s size from the HSP Index 
File. 

C. Overall Speedup 
To estimate whole-application speedup, we must consider 

the relative time spent in the word finder component of BLAST 
vs. the full execution time.  Our experiments show that the word 
finder requires a varying amount of overall execution time that 
increases with the size of the database being searched, ranging 
from 75% for 20 queries against a 200K record database up to 
93% for the same 20 queries against a 1M record database. 

Figure 5 shows our projected overall speedups for databases 
ranging from 200K records to 1M records, assuming that word 
finder speedup is a function of I/O reduction and that overall 
speedup is limited by the relative time spent in the word finder. 

V. CONCLUSIONS 
In this paper we describe a new algorithm for BLAST that is 

more amenable to FPGA acceleration than NCBI BLAST.  We 
show that this algorithm can substantial reduce the I/O 
requirement when assuming that the HSP finder can operate on 
the FPGA with zero time overhead and when the HSP Suffix 
table and Table of Contents tables can fit within FPGA memory.  
In future work we will analyze the impact of query batching on 
a deployed system. 
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Fig. 2. HSP Index File bytes read as a function of query characters, 

using the first 200K records from NR as the processed 
database. 
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Fig. 4. Word Finder Speedup as a function of queries, using the first 

200K records from NR as the processed database. 
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Fig. 5. Overall speedup as a function of database size, using 20 

randomly selected queries from the NR database. 
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Fig. 3. Database records read as a function of query characters, using 

a 200K record database. 
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