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ABSTRACT 

A Field Programmable Gate Array (FPGA), when used as a 
platform for implementing special-purpose computing 
architectures, offers the potential for increased functional 
parallelism over the alternative approach of software 
running on a general-purpose microprocessor.  However, 
the increasing disparity between the logic speed and density 
of a state-of-the-art FPGA versus a state-of-the-art 
microprocessor has already begun to negate the benefits of 
this increased functional parallelism for all but a limited set 
of applications.  We believe that the solution to this 
problem is to construct distributed multi-FPGA 
architectures to aggregate the parallelism of multiple 
FPGAs.  Such a system would require a high-capacity 
interconnect, and thus we propose arranging the FPGAs 
onto a scalable direct network.  This strategy requires each 
FPGA to contain an integrated router that must share the 
logic fabric with the application logic.  In this paper, we 
propose a novel routing technique that can significantly 
boost such a network’s capacity and be implemented into 
compact and efficient routers.  We begin with an existing 
lightweight routing algorithm and augment it with a novel 
technique called predictive load balancing, where routers 
collect information about the blocking behavior on their 
output ports and use this information when making routing 
decisions. 

1. INTRODUCTION 

Direct networks are a popular technique for interconnecting 
the nodes of large-scale multiprocessor systems [1].  In this 
approach, instead of connecting each of the processing 
nodes to a global high-radix router, each node is directly 
connected to a low-radix router and each of these routers is 
connected to a small set of neighboring routers.  Messages 
may be routed from any source node to any destination 
node through two or more routers.  The move from a single 
high-radix router to a collection of several low-radix routers 
shifts the complexity growth of the interconnect from 
quadratic to linear at the cost of additional transmission 
latency.  We have recently proposed the use of a wormhole-
switched 2D mesh network as a viable option for 

constructing large-scale multiple-FPGA processing 
architectures [2].  In this architecture, each FPGA is 
configured such that it is logically partitioned into a 
processing element and a router.  Each FPGA is connected 
to its neighbors through channels formed by its integrated 
multi-gigabit transceivers (MGTs). 

A 2D mesh topology consists of a 2D array of routers 
with each router having five bidirectional ports.  Four of 
these ports connect to the logically adjacent neighbor 
routers (north, south, east, west) while the fifth is used as an 
internal channel to the processing element (inject, eject).  In 
wormhole switching, variable-length packets are 
subdivided into a sequence of fixed-length flits (flow 
control digits) which themselves are routed across the 
network in a store-and-forward fashion (the flits would 
undergo serialization and de-serialization when being 
transmitted across MGTs).  The first flit in a packet is a 
header flit that contains a relative destination address for the 
packet.  In the case of a 2D mesh, this address is 
represented as a pair of signed values that specify the 
packet’s offset in both the X and Y dimension.  The 
remaining flits are payload flits that contain the packet data 
as well as a flag bit that denotes if the flit represents the last 
flit of the packet.  When a header flit enters an input port on 
a router, the router’s internal crossbar switch is configured 
such that all flits entering this input are forwarded to an 
appropriate output port.  Even if only minimal routes are 
allowed, the router must make a route decision consisting of 
up to two possible directions.  For example, a flit entering a 
router that is destined for a node that is south-east of its 
current location may be forwarded to the south or east 
output port.  Immediately after the last payload flit is 
forwarded, the router’s internal switch is reset such that the 
output port is unassigned.  The primary advantage of 
wormhole switching is the ability for the router designer to 
design the buffers at each input port at the flit-granularity as 
opposed to at the packet-granularity.  A disadvantage of this 
technique is that the flits that make up an in-flight packet 
will occupy input ports at multiple routers along its path.  
This leads to blocking behavior caused by contention for 
input buffers (ultimately caused by contention for crossbar 
output ports).  Another side-effect of wormhole switching is 
the possibility of deadlock caused by a circuit of blocked 
packets.  Turn-based routing prevents deadlock by 
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route(block_hist[outputs], 
aval_dirs[], // set by O-E routing 
flit) { 

 
pref_dir = aval_dirs[0]; 
nonpref_dir = aval_dirs[1]; 
 
if size(aval_dirs) == 2 { 

if block_hist[aval_dirs[0]] > 
block_hist [aval_dirs[1]] then 
pref_dir = aval_dirs[1]; 
nonpref_dir = aval_dirs[0]; 

} 
 
if crossbar_output(pref_dir) is available 
{ 

block_hist[pref_dir]--; 
configure crossbar and route packet; 
return; 

} else { 
block_hist[pref_dir]++; 

} 
if crossbar_output(nonpref_dir) is available 
{ 

block_hist[nonpref_dir]--; 
configure crossbar and route packet; 
return;  

} else { 
block_hist[nonpref_dir]++; 

} 
} 

 
forward(block_hist[outputs]) { 

for each configured crossbar output i { 
attempt to forward flit from corresponding input 

port; 
if output i is blocked 

block_hist[i]++; 
else 

block_hist[i]--; 
} 

 
Fig. 1.  Pseudocode for Load-Balancing Algorithm. 

 
Fig. 2.  Task graphs representing four traffic patterns:  
(a) linear fan-in, (b) fan-in, (c) diamond, (d) linear.  
Source tasks are black, sink tasks are checkerboard. 

restricting routes such that two of the eight possible turns 
are prohibited [4].  Turn-based routing is referred to as 
semi-adaptive routing, as it restricts packets to a subset of 
their possible minimum paths from source to destination.  
Such an algorithm constitutes the network’s routing 
algorithm, which defines the set of possible paths that a 
packet from a given source/destination pair may follow 
through the network.  A deterministic routing technique 
restricts this set of possible paths to one, while adaptive 
routing allows the size of this set to grow as an exponential 
function of the source/destination distance.  However, this 
is not always an advantage, since bad routing decisions may 
lead to even worse performance than deterministic routing.  
Unfortunately, individual routers cannot make routing 
decisions based on knowledge of downstream network 
congestion.  The reason for this is that while individual 
routers may make routing decisions based on the status of 
their own ports, they do not possess global knowledge of 
the current and future state of the network. 

We believe the best solution to this problem is for each 
router to maintain historical information of blocks on its 
own output ports and make routing decisions based on this 
information.  This allows each router to take advantage of 
“feedback” information to which the router has access 

when forwarding payload flits from a packet that is blocked 
at a downstream router.  This load-balancing technique 
must operate over an underlying routing algorithm that is 
adaptive and deadlock-free.  We therefore chose the Odd-
Even Turn Model because it achieves semi-adaptive routing 
without the requirement of high-overhead virtual channel 
flow control [5].  This routing algorithm guarantees 
freedom from deadlock by imposing the following 
restrictions: no 180-degree turns are allowed, packets 
entering from the west input port into a router located in an 
even column may not make a 90-degree turn (no WN or 
WS turns), and packets entering a router located in an odd 
column may not take a 90-degree turn to the west (no SW 
or NW turns).  A router that implements this algorithm 
must also take special care to avoid dead-end routes.  For 
example, if a packet is allowed to enter from the west into 
an intermediate router in an even column that contains the 
destination node, it will not be able to turn to the north or 
south to reach the destination. 

2. PREDICTIVE LOAD BALANCING 

Predictive load balancing operates on a principle analogous 
to branch predictors for a microprocessor.  In this 
technique, each router keeps a running sum of the number 
of blocks that have occurred when forwarding flits to each 
output port.  A block can occur when a router cannot route 
a header flit due to contention for the router’s internal 
crossbar output ports (referred to as an internal block) or 
when a router cannot forward a payload flit to its 
corresponding output port due to an internal block within 
one of the downstream routers (referred to as a downstream 
block). 

Any internal or downstream block will result in the 
block count being incremented for the corresponding output 
port.  On the other hand, any flit that is successfully routed 



or forwarded through the router’s internal crossbar results 
in the corresponding block count being decremented.  In 
order to test the upper bound of performance for our load 
balancing technique, we currently do not consider “wrap-
around” conditions for the block count value (when the 
value exceeds the maximum possible value given the bit-
width). 

When more than one routing option is available, the 
router consults the number of blocks that have previously 
occurred before it makes a routing decision.  This allows 
the routers to choose preferred routing paths in order to 
evenly distribute traffic across the network.  This technique 
works best for applications that exhibit consistent, periodic 
traffic patterns. 

Pseudocode for predictive load balancing is shown in 
Figure 1.  Our load balancing algorithm consists of two 
main components.  The first component, route, performs 
load balancing and records blocking history for header flits.  
In this routine, aval_dirs[] is set by the underlying routing 
technique and defines the allowed output ports for the 
packet.  The second component, forward, records blocking 
history for payload flits. 

3. SYSTEM AND TRAFFIC MODEL 

Our system model consists of a 16 x 16 bidirectional mesh 
of interconnected nodes, where each node represents a 
single FPGA.  Each node consists of a single processing 
element (PE) and a single router.  Each input port of each 
router has a buffer capacity of one flit.  Each processing 
element is configured to hold a hardware task. 

In order to model traffic characteristics of a generic 
hardware application, we assume that multiple independent 
hardware applications are mapped onto the sample multi-
FPGA processing architecture.  Each application is 
represented as a directed acyclic graph (DAG), referred to 
as a task graph, where each vertex represents a task and 
each edge represents a data dependency.  As specified by 
the task graph, each task accepts one or more inbound 
packets from one or more other tasks.  Each packet has a 
length of 20 flits.  Each task must receive all of its inbound 
packets before it may begin performing its execution.  The 
execution time of each task is fixed at 2000 network clock 
cycles (100x the transfer time of an unblocked packet 
though a router).  After its execution time has elapsed, the 
task transmits one or more outbound packets to one or more 
other tasks.  Each task graph contains a set of one or more 
tasks that are designated as source tasks, which is not 
required to wait for source packets before beginning 
execution.  The source task(s) repeat execution and 
resultant transmission of outbound packet(s) every p 
network clock cycles, where p is a predefined period time.  
This behavior is continued indefinitely.  Each application 
also has a set of one or more tasks that are designated as 
sink tasks, which do not transmit packets when they 

complete their computation.  At the instant when all sink 
tasks for a given task graph have received their inbound 
packets and their required execution time has elapsed, the 
task graph is considered to have completed an application 
execution. 

For our experiments, we pseudo-randomly mapped 
each of the tasks from 8 independent task graphs of 32 tasks 
each onto each of the PEs, without allowing any two or 
more tasks from any single task graph to be mapped onto a 
single PE.  The periods of each task graph are equal, and 
the period time for the graphs is varied in order to simulate 
varying network load.  Figure 2 illustrates four classes of 
task graphs that are used to simulate traffic patterns (the 
task graphs shown contain 6 tasks each, whereas the tested 
graphs contain 32 tasks).  These graphs were chosen to 
model traffic patterns from common multi-processor 
applications.  In order to measure the effectiveness of our 
load balancing technique, we ran a series of network 
simulations that measures the average application execution 
time over all task graphs over 500 executions of each graph.  
We tested the following routing/load balancing algorithms.  
For these algorithms, when multiple header flits are waiting 
for a single output channel, they are serviced in the order of 
their arrival. 

• OEN:  odd-even routing with naïve load balancing 
This routing algorithm is minimal and semi-adaptive, 

meaning that intermediate routers may chose to route 
packets in up to two possible directions.  At least one 
direction is always allowable, and two directions are 
allowable to routers that do not occupy the same row or 
column as the destination node and when neither direction 
results in an illegal turn or would lead to an inevitable dead-
end condition.  When two routing directions are both 
allowable and available (crossbar output is unbound and 
unblocked), the router chooses the output along the Y 
dimension (north/south). 

• OEP:  OE routing /predictive load balancing 
In this technique, each router uses the odd-even routing 

rules to determine a set of allowable routing directions in 
order to prevent deadlock and dead-end routes.  When two 
directions are both allowable and available, the router 
utilizes the load balancing algorithm shown in Figure 1 to 
choose an output port. 

4. RESULTS 

In order to measure the performance of our load balancing 
technique, we have implemented the above network model 
as well as a corresponding flit-level simulator in Java [5].  
The simulator operates on a network-cycle granularity, 
where one network cycle is required to transfer a flit across 
a router-to-router, router-to-PE, or PE-to-router channel.  
One network cycle is also required for a router to perform a 
routing operation.  The network model was simulated over 
a range of period times, allowing each traffic pattern to be 



Table 1.  Average time to execute task graphs with 
hybrid linear fan-in traffic pattern. 

period OEN OEP OEP/OEN 
700 341223 324091 0.9498 
750 253493 241928 0.9544 
800 185461 141163 0.7611 
850 140704 92935 0.6605 
900 106519 68820 0.6461 
950 73313 67263 0.9175 

1000 67927 66976 0.9860 
 

Table 2.  Average time to execute task graphs with 
fan-in traffic pattern. 

period OEN OEP OEP/OEN 
1700 593639 6490 0.0109 
1750 357764 6090 0.0170 
1800 283319 5950 0.0210 
1850 114548 5877 0.0513 
1900 29515 5897 0.1998 
1950 8861 5851 0.6603 
2000 5829 5734 0.9837 

 
Table 3.  Average time to execute task graphs with 

diamond traffic pattern. 

period OEN OEP OEP/OEN 
800 209010 156276 0.7477 
850 168090 139291 0.8287 
900 145740 117860 0.8087 
950 120365 95485 0.7933 

1000 98804 82559 0.8356 
1050 80919 74126 0.9161 
1100 66158 68646 1.0376 

 
Table 4.  Average time to execute task graphs with 

linear traffic pattern. 

period OEN OEP OEP/OEN 
100 394806 398027 1.0082 
150 214202 206466 0.9639 
200 123940 122923 0.9918 
250 81205 85196 1.0491 
300 65585 66450 1.0132 
350 65412 65517 1.0016 
400 65360 65434 1.0011 

 
operated over a range of network load conditions.  Lower 
periods correspond to higher network load.  Each 
simulation is run until all task graphs complete at least 500 
executions.  We estimate performance by computing the 
average execution time of each task graph over all 
execution periods.  Lower execution times reflect less 
blocking behavior and lower packet latencies. 

Tables 1-4 list the average execution times required by 
each of the task graphs assuming OEN and OEP routing 
over a period window of 7 with a granularity of 50 cycles.  
Also shown is the relative performance of OEP to OEN, by 
dividing the execution time of OEP by OEN.  These 
particular result windows were selected by fixing the 
highest period value to the period time at which the 
performance of both routing algorithms converges, meaning 
that the period is sufficiently high that there is insignificant 
network contention and thus insignificant blocking 
behavior (when the ratio exceeds .95, except in the linear 
case). 

For the linear-fan-in traffic pattern, OEP exhibits a 
reduction in execution time over OEN by up to 36%.  For 
the fan-in traffic pattern, OEP exhibits a reduction in 
execution time over OEN by up to 99% for the periods 
range selected.  For the diamond traffic pattern, OEP 
exhibits a reduction in execution time over OEN by up to 
21% for the periods range selected.  For the linear traffic 
pattern, OEP does not exhibit any appreciable difference in 
performance over the OEN algorithm.  From the results, it 
is clear that predictive load-balancing yields significant 
improvement over naïve load balancing for traffic patterns 
that contain a fan-in communication behavior.  This 
includes hybrid patterns that contain both fan-in and linear 
or fan-in and fan-out (diamond pattern) behavior. 

5. CONCLUSION 

This paper describes a novel load-balancing technique for 
2D meshes that may be implemented within area efficient 
integrated routers.  It has been verified to achieve higher 
performance relative to traditional approaches for 
applications that exhibit fan-in traffic behavior. 
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