
PREDICTIVE LOAD BALANCING FOR INTERCONNECTED FPGAS

Jason D. Bakos, Charles L. Cathey, E. Allen Michalski

Department of Computer Science and Engineering
University of South Carolina

Columbia, SC 29208
e-mail: {jbakos, catheyc, michalsk}@cse.sc.edu

ABSTRACT

A Field Programmable Gate Array (FPGA), when used as a
platform for implementing special-purpose computing
architectures, offers the potential for increased functional
parallelism over the alternative approach of software
running on a general-purpose microprocessor. However,
the increasing disparity between the logic speed and density
of a state-of-the-art FPGA versus a state-of-the-art
microprocessor has already begun to negate the benefits of
this increased functional parallelism for all but a limited set
of applications. We believe that the solution to this
problem is to construct distributed multi-FPGA
architectures to aggregate the parallelism of multiple
FPGAs. Such a system would require a high-capacity
interconnect, and thus we propose arranging the FPGAs
onto a scalable direct network. This strategy requires each
FPGA to contain an integrated router that must share the
logic fabric with the application logic. In this paper, we
propose a novel routing technique that can significantly
boost such a network’s capacity and be implemented into
compact and efficient routers. We begin with an existing
lightweight routing algorithm and augment it with a novel
technique called predictive load balancing, where routers
collect information about the blocking behavior on their
output ports and use this information when making routing
decisions.

1. INTRODUCTION

Direct networks are a popular technique for interconnecting
the nodes of large-scale multiprocessor systems [1]. In this
approach, instead of connecting each of the processing
nodes to a global high-radix router, each node is directly
connected to a low-radix router and each of these routers is
connected to a small set of neighboring routers. Messages
may be routed from any source node to any destination
node through two or more routers. The move from a single
high-radix router to a collection of several low-radix routers
shifts the complexity growth of the interconnect from
quadratic to linear at the cost of additional transmission
latency. We have recently proposed the use of a wormhole-
switched 2D mesh network as a viable option for

constructing large-scale multiple-FPGA processing
architectures [2]. In this architecture, each FPGA is
configured such that it is logically partitioned into a
processing element and a router. Each FPGA is connected
to its neighbors through channels formed by its integrated
multi-gigabit transceivers (MGTs).

A 2D mesh topology consists of a 2D array of routers
with each router having five bidirectional ports. Four of
these ports connect to the logically adjacent neighbor
routers (north, south, east, west) while the fifth is used as an
internal channel to the processing element (inject, eject). In
wormhole switching, variable-length packets are
subdivided into a sequence of fixed-length flits (flow
control digits) which themselves are routed across the
network in a store-and-forward fashion (the flits would
undergo serialization and de-serialization when being
transmitted across MGTs). The first flit in a packet is a
header flit that contains a relative destination address for the
packet. In the case of a 2D mesh, this address is
represented as a pair of signed values that specify the
packet’s offset in both the X and Y dimension. The
remaining flits are payload flits that contain the packet data
as well as a flag bit that denotes if the flit represents the last
flit of the packet. When a header flit enters an input port on
a router, the router’s internal crossbar switch is configured
such that all flits entering this input are forwarded to an
appropriate output port. Even if only minimal routes are
allowed, the router must make a route decision consisting of
up to two possible directions. For example, a flit entering a
router that is destined for a node that is south-east of its
current location may be forwarded to the south or east
output port. Immediately after the last payload flit is
forwarded, the router’s internal switch is reset such that the
output port is unassigned. The primary advantage of
wormhole switching is the ability for the router designer to
design the buffers at each input port at the flit-granularity as
opposed to at the packet-granularity. A disadvantage of this
technique is that the flits that make up an in-flight packet
will occupy input ports at multiple routers along its path.
This leads to blocking behavior caused by contention for
input buffers (ultimately caused by contention for crossbar
output ports). Another side-effect of wormhole switching is
the possibility of deadlock caused by a circuit of blocked
packets. Turn-based routing prevents deadlock by

1-4244-0 312-X/06/$20.00 c©2006 IEEE.

route(block_hist[outputs],
aval_dirs[], // set by O-E routing
flit) {

pref_dir = aval_dirs[0];
nonpref_dir = aval_dirs[1];

if size(aval_dirs) == 2 {

if block_hist[aval_dirs[0]] >
block_hist [aval_dirs[1]] then
pref_dir = aval_dirs[1];
nonpref_dir = aval_dirs[0];

}

if crossbar_output(pref_dir) is available
{

block_hist[pref_dir]--;
configure crossbar and route packet;
return;

} else {
block_hist[pref_dir]++;

}
if crossbar_output(nonpref_dir) is available
{

block_hist[nonpref_dir]--;
configure crossbar and route packet;
return;

} else {
block_hist[nonpref_dir]++;

}
}

forward(block_hist[outputs]) {

for each configured crossbar output i {
attempt to forward flit from corresponding input

port;
if output i is blocked

block_hist[i]++;
else

block_hist[i]--;
}

Fig. 1. Pseudocode for Load-Balancing Algorithm.

Fig. 2. Task graphs representing four traffic patterns:
(a) linear fan-in, (b) fan-in, (c) diamond, (d) linear.
Source tasks are black, sink tasks are checkerboard.

restricting routes such that two of the eight possible turns
are prohibited [4]. Turn-based routing is referred to as
semi-adaptive routing, as it restricts packets to a subset of
their possible minimum paths from source to destination.
Such an algorithm constitutes the network’s routing
algorithm, which defines the set of possible paths that a
packet from a given source/destination pair may follow
through the network. A deterministic routing technique
restricts this set of possible paths to one, while adaptive
routing allows the size of this set to grow as an exponential
function of the source/destination distance. However, this
is not always an advantage, since bad routing decisions may
lead to even worse performance than deterministic routing.
Unfortunately, individual routers cannot make routing
decisions based on knowledge of downstream network
congestion. The reason for this is that while individual
routers may make routing decisions based on the status of
their own ports, they do not possess global knowledge of
the current and future state of the network.

We believe the best solution to this problem is for each
router to maintain historical information of blocks on its
own output ports and make routing decisions based on this
information. This allows each router to take advantage of
“feedback” information to which the router has access

when forwarding payload flits from a packet that is blocked
at a downstream router. This load-balancing technique
must operate over an underlying routing algorithm that is
adaptive and deadlock-free. We therefore chose the Odd-
Even Turn Model because it achieves semi-adaptive routing
without the requirement of high-overhead virtual channel
flow control [5]. This routing algorithm guarantees
freedom from deadlock by imposing the following
restrictions: no 180-degree turns are allowed, packets
entering from the west input port into a router located in an
even column may not make a 90-degree turn (no WN or
WS turns), and packets entering a router located in an odd
column may not take a 90-degree turn to the west (no SW
or NW turns). A router that implements this algorithm
must also take special care to avoid dead-end routes. For
example, if a packet is allowed to enter from the west into
an intermediate router in an even column that contains the
destination node, it will not be able to turn to the north or
south to reach the destination.

2. PREDICTIVE LOAD BALANCING

Predictive load balancing operates on a principle analogous
to branch predictors for a microprocessor. In this
technique, each router keeps a running sum of the number
of blocks that have occurred when forwarding flits to each
output port. A block can occur when a router cannot route
a header flit due to contention for the router’s internal
crossbar output ports (referred to as an internal block) or
when a router cannot forward a payload flit to its
corresponding output port due to an internal block within
one of the downstream routers (referred to as a downstream
block).

Any internal or downstream block will result in the
block count being incremented for the corresponding output
port. On the other hand, any flit that is successfully routed

or forwarded through the router’s internal crossbar results
in the corresponding block count being decremented. In
order to test the upper bound of performance for our load
balancing technique, we currently do not consider “wrap-
around” conditions for the block count value (when the
value exceeds the maximum possible value given the bit-
width).

When more than one routing option is available, the
router consults the number of blocks that have previously
occurred before it makes a routing decision. This allows
the routers to choose preferred routing paths in order to
evenly distribute traffic across the network. This technique
works best for applications that exhibit consistent, periodic
traffic patterns.

Pseudocode for predictive load balancing is shown in
Figure 1. Our load balancing algorithm consists of two
main components. The first component, route, performs
load balancing and records blocking history for header flits.
In this routine, aval_dirs[] is set by the underlying routing
technique and defines the allowed output ports for the
packet. The second component, forward, records blocking
history for payload flits.

3. SYSTEM AND TRAFFIC MODEL

Our system model consists of a 16 x 16 bidirectional mesh
of interconnected nodes, where each node represents a
single FPGA. Each node consists of a single processing
element (PE) and a single router. Each input port of each
router has a buffer capacity of one flit. Each processing
element is configured to hold a hardware task.

In order to model traffic characteristics of a generic
hardware application, we assume that multiple independent
hardware applications are mapped onto the sample multi-
FPGA processing architecture. Each application is
represented as a directed acyclic graph (DAG), referred to
as a task graph, where each vertex represents a task and
each edge represents a data dependency. As specified by
the task graph, each task accepts one or more inbound
packets from one or more other tasks. Each packet has a
length of 20 flits. Each task must receive all of its inbound
packets before it may begin performing its execution. The
execution time of each task is fixed at 2000 network clock
cycles (100x the transfer time of an unblocked packet
though a router). After its execution time has elapsed, the
task transmits one or more outbound packets to one or more
other tasks. Each task graph contains a set of one or more
tasks that are designated as source tasks, which is not
required to wait for source packets before beginning
execution. The source task(s) repeat execution and
resultant transmission of outbound packet(s) every p
network clock cycles, where p is a predefined period time.
This behavior is continued indefinitely. Each application
also has a set of one or more tasks that are designated as
sink tasks, which do not transmit packets when they

complete their computation. At the instant when all sink
tasks for a given task graph have received their inbound
packets and their required execution time has elapsed, the
task graph is considered to have completed an application
execution.

For our experiments, we pseudo-randomly mapped
each of the tasks from 8 independent task graphs of 32 tasks
each onto each of the PEs, without allowing any two or
more tasks from any single task graph to be mapped onto a
single PE. The periods of each task graph are equal, and
the period time for the graphs is varied in order to simulate
varying network load. Figure 2 illustrates four classes of
task graphs that are used to simulate traffic patterns (the
task graphs shown contain 6 tasks each, whereas the tested
graphs contain 32 tasks). These graphs were chosen to
model traffic patterns from common multi-processor
applications. In order to measure the effectiveness of our
load balancing technique, we ran a series of network
simulations that measures the average application execution
time over all task graphs over 500 executions of each graph.
We tested the following routing/load balancing algorithms.
For these algorithms, when multiple header flits are waiting
for a single output channel, they are serviced in the order of
their arrival.

• OEN: odd-even routing with naïve load balancing
This routing algorithm is minimal and semi-adaptive,

meaning that intermediate routers may chose to route
packets in up to two possible directions. At least one
direction is always allowable, and two directions are
allowable to routers that do not occupy the same row or
column as the destination node and when neither direction
results in an illegal turn or would lead to an inevitable dead-
end condition. When two routing directions are both
allowable and available (crossbar output is unbound and
unblocked), the router chooses the output along the Y
dimension (north/south).

• OEP: OE routing /predictive load balancing
In this technique, each router uses the odd-even routing

rules to determine a set of allowable routing directions in
order to prevent deadlock and dead-end routes. When two
directions are both allowable and available, the router
utilizes the load balancing algorithm shown in Figure 1 to
choose an output port.

4. RESULTS

In order to measure the performance of our load balancing
technique, we have implemented the above network model
as well as a corresponding flit-level simulator in Java [5].
The simulator operates on a network-cycle granularity,
where one network cycle is required to transfer a flit across
a router-to-router, router-to-PE, or PE-to-router channel.
One network cycle is also required for a router to perform a
routing operation. The network model was simulated over
a range of period times, allowing each traffic pattern to be

Table 1. Average time to execute task graphs with
hybrid linear fan-in traffic pattern.

period OEN OEP OEP/OEN
700 341223 324091 0.9498
750 253493 241928 0.9544
800 185461 141163 0.7611
850 140704 92935 0.6605
900 106519 68820 0.6461
950 73313 67263 0.9175

1000 67927 66976 0.9860

Table 2. Average time to execute task graphs with
fan-in traffic pattern.

period OEN OEP OEP/OEN
1700 593639 6490 0.0109
1750 357764 6090 0.0170
1800 283319 5950 0.0210
1850 114548 5877 0.0513
1900 29515 5897 0.1998
1950 8861 5851 0.6603
2000 5829 5734 0.9837

Table 3. Average time to execute task graphs with

diamond traffic pattern.

period OEN OEP OEP/OEN
800 209010 156276 0.7477
850 168090 139291 0.8287
900 145740 117860 0.8087
950 120365 95485 0.7933

1000 98804 82559 0.8356
1050 80919 74126 0.9161
1100 66158 68646 1.0376

Table 4. Average time to execute task graphs with

linear traffic pattern.

period OEN OEP OEP/OEN
100 394806 398027 1.0082
150 214202 206466 0.9639
200 123940 122923 0.9918
250 81205 85196 1.0491
300 65585 66450 1.0132
350 65412 65517 1.0016
400 65360 65434 1.0011

operated over a range of network load conditions. Lower
periods correspond to higher network load. Each
simulation is run until all task graphs complete at least 500
executions. We estimate performance by computing the
average execution time of each task graph over all
execution periods. Lower execution times reflect less
blocking behavior and lower packet latencies.

Tables 1-4 list the average execution times required by
each of the task graphs assuming OEN and OEP routing
over a period window of 7 with a granularity of 50 cycles.
Also shown is the relative performance of OEP to OEN, by
dividing the execution time of OEP by OEN. These
particular result windows were selected by fixing the
highest period value to the period time at which the
performance of both routing algorithms converges, meaning
that the period is sufficiently high that there is insignificant
network contention and thus insignificant blocking
behavior (when the ratio exceeds .95, except in the linear
case).

For the linear-fan-in traffic pattern, OEP exhibits a
reduction in execution time over OEN by up to 36%. For
the fan-in traffic pattern, OEP exhibits a reduction in
execution time over OEN by up to 99% for the periods
range selected. For the diamond traffic pattern, OEP
exhibits a reduction in execution time over OEN by up to
21% for the periods range selected. For the linear traffic
pattern, OEP does not exhibit any appreciable difference in
performance over the OEN algorithm. From the results, it
is clear that predictive load-balancing yields significant
improvement over naïve load balancing for traffic patterns
that contain a fan-in communication behavior. This
includes hybrid patterns that contain both fan-in and linear
or fan-in and fan-out (diamond pattern) behavior.

5. CONCLUSION

This paper describes a novel load-balancing technique for
2D meshes that may be implemented within area efficient
integrated routers. It has been verified to achieve higher
performance relative to traditional approaches for
applications that exhibit fan-in traffic behavior.

6. REFERENCES

[1] L.M. Ni, P.K. McKinley, "A survey of wormhole routing
techniques in direct networks," IEEE Computer, Volume 26,
Issue 2, Feb. 1993 Page(s): 62 - 76.

[2] Charles L. Cathey, Jason D. Bakos, Duncan A. Buell, "A
Reconfigurable Distributed Computing Fabric Exploiting
Multilevel Parallelism," IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2006),
April 24-26, 2006.

[3] C.J. Glass, L.M. Ni, "The Turn Model for Adaptive
Routing", Proc. 19th Ann. Int'l Symp. Computer
Architecture, pp. 278-287, May 1992.

[4] G.-M. Chiu, “The Odd-Even Turn Model for Adaptive
Routing,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 11, No. 7, July 2000, Pages(s): 729-738.

[5] NoCsim, available at http://sourceforge.net/projects/nocsim.

