
Lucas-Kanade Optical Flow Estimation on the
TI C66x Digital Signal Processor

Fan Zhang∗, Yang Gao∗, Jason D. Bakos†
∗ Department of Computer Science and Engineering, University of South Carolina

{zhangf, gao36}@email.sc.edu
†Department of Computer Science and Engineering, University of South Carolina

jbakos@cse.sc.edu

Abstract—Optical flow is a computer vision operation that
seeks to calculate the apparent motion of features across two
consecutive frames of a video sequence. It is an important
constituent kernel in many automated intelligence, surveillance,
and reconnaissance applications. Different optical flow algorithms
represent points in the trade off space of accuracy and cost, but
in general all are extremely computationally expensive. In this
paper we describe an implementation and tuning of the dense
pyramidal Lucas-Kanade Optical Flow method on the Texas
Instruments C66x, a 10 Watt embedded digital signal processor
(DSP). By using aggressive manual optimization, we achieve 90%
of its peak theoretical floating point throughput, resulting in an
energy efficiency that is 8.2X that of a modern Intel CPU and
2.0X that of a modern NVIDIA GPU. We believe this is a major
step toward the ability to deploy mobile systems that are capable
of complex computer vision applications, and real-time optical
flow in particular.

I. INTRODUCTION

Optical flow estimation on embedded processors has a
key role in robotic vision, surveillance system design, and
other computer vision tasks. Optical flow seeks to calculate
the motion of objects such as edges, corners, surfaces, or
other complicated color patterns between consecutive frames
in the video stream. It is widely used in motion-based image
processing and when measuring the movement of the video
background, tracking moving objects, and motion-based video
compression.

The existing Optical Flow methods can be categorized
into four types: block-based methods, spatiotemporal differ-
ential methods, frequency-based methods, and correlation-
based methods [4], [5], [6], [7], [8] [1]. Lucas-Kanade is a
spatiotemporal differential method and is perhaps the most
well-known and most studied. This is perhaps due to it having
fine-grain parallelism and reasonably high accuracy [2] [3]. In
this paper, we focus on developing methodologies to accelerate
Lucas-Kanade method on the TI C66x DSP, a relatively new
microarchitecture that offers comparable peak floating point
capability to a desktop CPU while having a comparable power
envelope to a smartphone processor.

Floating point accelerators such as general purpose GPUs
(GPGPUs) are widely applied as coprocessors for computer
vision tasks. However, GPGPUs are generally not available
in lightweight mobile applications (i.e. lighter weight than a
high-end laptop) because mobile embedded SoC GPUs have
not yet adopted general purpose programming models. This
has provided an opportunity for digital signal processors such

as the TI C66x to become a new generation of power efficient
coprocessor technology for lightweight mobile platforms. The
C66x DSP is based on TI’s Keystone architecture and consists
of eight 1.25 GHz VLIW/SIMD processor cores. Each core
contains two register files (side A and side B), each connected
to four single precision floating point functional units (eight
functional units total). Each core also contains two on-chip
memories that can be programmatically configured as cache,
scratchpad, or a mixture of both. Like other VLIW archi-
tectures, the compiler must software pipeline each innermost
loop in order to efficiently schedule the functional units and
registers. This paper describes a Lucas-Kanade implementation
for this architecture and provides a close examination of
its performance and efficiency as compared to competing
processor technologies in both the HPC and embedded space.

II. BACKGROUND

The optical flow computation is based on Equation 1. In
this equation, pixel intensity is represented as a function of its
position (x, y) and the time t in the video stream.

f(x, y, t) = f(x + ∆x, y + ∆y, t + ∆t) (1)

Assuming the pixel displacement is small between consecutive
frames, the right side of the equation can be approximated by
its first-order Taylor expansion.

f(x, y, t) = f(x, y, t) +
∂f

∂x
∆x +

∂f

∂y
∆y +

∂f

∂t
∆t (2)

This yields Equation 3

∂f

∂x
vx +

∂f

∂y
vy = −∂f

∂t
(3)

In Equation 3, the partial derivatives ∂f/∂x, ∂f/∂y and ∂f/∂t
can be computed from subtracting the adjacent pixel intensity
from the images or by using convolution methods such as a
Sobel filter.

Equation 3 has two unknown variables that cannot be
solved if no additional condition is provided. To solve this
problem, Lucas-Kanade method assumes that the flow field is
spatially preservative, i.e. the pixels within a certain window
are assumed to have the identical velocity value. Thus the
equation can be solved by taking a neighbor window around
the advised pixel. Assuming that the window includes n pixels

978-1-4799-6233-4/14/$31.00 ©2014 IEEE

q1, q2, ...qn, the linear equation system are listed in Equation
4.

∂f
∂x (q1)vx + ∂f

∂y (q1)vy = −∂f
∂t (q1)

∂f
∂x (q2)vx + ∂f

∂y (q2)vy = −∂f
∂t (q2)

...
∂f
∂x (qn)vx + ∂f

∂y (qn)vy = −∂f
∂t (qn)

(4)

This gives an over determined linear system that can be
potentially solved by the least squares method, where the
velocity value vx and vy of each pixel can be computed by
Equation 7.

A =

∂f
∂x (q1) ∂f

∂y (q1)
∂f
∂x (q2) ∂f

∂y (q2)

...
∂f
∂x (qn) ∂f

∂y (qn)

 (5)

b =

−∂f

∂t (q1)

−∂f
∂t (q2)
...

−∂f
∂t (qn)

 (6)

(vx, vy)T = (ATA)−1AT b (7)

In order to improve the accuracy, the least squares method
is performed iteratively on each pixel multiple times. The
accumulated flow vx, vy are used to offset the center of the
neighbor window in the second image.

1) Given a pixel x,y and let vx = 0, vy = 0.
2) Pick the neighbor window w1 in the image1 centered

at x,y, the neighbor window w2 in the image2 cen-
tered at pixel x + vx, y + vy .

3) Compute the velocity update v′x, v′y from the least
squares method. If the magnitude of v′ is less than the
given threshold or the number of iteration reaches the
maximum number, stop. Otherwise let vx = vx + v′x,
vy = vy + v′y and go to 2.

The least squares method assumes that the inter-frame
movement is constrained to a maximum distance given by
the neighbor window. To correct for this, a coarse-to-fine
methodology that uses Gaussian pyramid is added to track
larger movements. A Gaussian pyramid is a series of images
which are weighted down using a Gaussian blur and a 1/2
down sampling. When this technique is used multiple times,
it creates a stack of successively half-sized images, with
each pixel containing a local average that corresponds to a
pixel neighborhood on a lower level of the pyramid. Higher
level of Gaussian pyramid contains less detail and noise and
shows a more abstract view. Gaussian blur is a separable 2D
convolution that can be implemented as two passes of 1D
convolution on x and y direction.

Using the Gaussian pyramid, Lucas-Kanade method is able
to discover larger movement by tracking them in a hierarchical
scaled vision space. The movement of a pixel that goes outside
the neighbor window on the higher level of the pyramid
becomes smaller so that it may be traceable. Two Gaussian
pyramids are generated from the two input images with an

user specified level number, and the initial optical flow on the
top level of the pyramids is set to be zero. The algorithm starts
computing optical flow using the Lucas-Kanade method on the
top level of the pyramids and uses the result as the initial value
of the next level. Because the size of optical flow computed
from level n is half of the size of level n+1, it must be bilinear
interpolated by a factor of two in both height and width. This
procedure repeats until all the levels of the pyramids have been
processed.

The Pyramidal Lucas-Kanade method is shown in Algo-
rithm 1.

Algorithm 1 Pseudocode of Pyramidal Lucas-Kanade Method
1: Input: Two input images im1 and im2, pyramid level L
2: Output: Optical flow field f .
3: Generate Gaussian pyramids for im1 and im2
4: Initialize flow field f with zero values
5: for i = L→ 2 do
6: Compute the optical flow fi on pyramid level i using

iterative Lucas-Kanade method with an initial guess=f
7: 2X bilinear interpolate fi in both height and width and

store the result in f
8: end for
9: Compute the optical flow f1 on pyramid level 1 using

iterative Lucas-Kanade method with an initial guess=f
10: f = f1

III. ALGORITHM AND IMPLEMENTATION

We implement and accelerate the Lucas-Kanade method
using platform-specific optimization. Those methodologies in-
volve both instruction-level and thread-level parallelization of
the bottleneck components of the pyramidal Lucas-Kanade
method.

A. Gaussian Pyramid Generation

After applying kernel separation, the procedure of 2D
Gaussian blur can be separated to a horizontal 1x7 Gaussian
followed by a vertical 1x7 Gaussian. As shown in Figure 1, a
1x7 Gaussian blur involves 7 multiplications and 7 additions
for each pixel that can be organized into the SIMD instructions
QMPYSP (4-way SIMD multiplication) and DADDSP (2-way
SIMD addition) so that the utilization of the computation
units on the DSP can be maximized. The last operand of the
Gaussian blur is set to be NULL since only 7 computations
are needed.

In the vertical pass of the Gaussian blur the input pixels
are strided across different rows. For this we manually unrolled
the outer loop (column loop) by a factor of 2 so that the data
from two consecutive iterations can be integrated into a 2-way
SIMD load. In each loop iteration, a 7x2 (7 rows, 2 columns)
sub-block is loaded into 7 register pairs. The 7 lower halves
and higher halves of the register pairs are processed in the
same way as we perform SIMD multiplication and addition
on the horizontal Gaussian blur.

B. X and Y Direction Derivative Computation

Two of the derivative values dx and dy can be generated for
each pyramid level of the first input image and reused during

Dst[i + 3]

x x

Src[i+2] Src[i+3]

+

Src[i+4] Src[i+5]

x x

Src[i+6] NULL

+

+

Side A Side B

Src[i] Src[i+1]

K[0] K[1] K[2] K[3] K[4] K[5] K[6] NULL

Fig. 1. Use of SIMD Instructions to Accelerate Gaussian Blur

I(i,j) I(i+1,j)

I(i,j+1) I(i+1,j+1)

I(i,j) I(i+1,j)

I(i,j+1) I(i+1,j+1)

+

Dx(i,j)

X 0.5

Dy(i,j)

X 0.5

Side BSide A

+

Fig. 2. Use of SIMD Instructions to Accelerate X and Y Derivative
Computation

the entire procedure. Instead of storing dx and dy value into
two matrices, we interleave them into a float2 vector type. This
allows dx and dy values to be stored and loaded together and
aligns the starting address of each pair of values with 64 bits so
that aligned SIMD load and store can be utilized and achieve
better memory performance. The optimization of derivative
computation is implemented by applying SIMD addition and
subtraction. An example of SIMD derivative computation is
shown in Figure 2.

C. Least Squares Method

After the generation of the Gaussian pyramid and derivative
matrices, the next step is to compute optical flow by least
squares method on each level of the Gaussian pyramid. This
part of the optimization consumes over 95% of the total
execution time.

Algorithm 2 shows the most expensive component of the

least squares method. It is a 2D loop that requires the compu-
tation of the summation of

∑
d2x,

∑
dxdy ,

∑
d2y ,

∑
dxdt,∑

dydt in the neighbor window. This computation is per-
formed on each pixel on all the pyramid levels multiple times
(iterative refinement). The dx and dy values are read from
the partial derivative matrix, and dt value is computed from
subtraction of the corresponding pixel intensity im2[i2, j2] and
im1[i1, j1]. Without optimization, four floating point loads
(D[i1, j1].dx, D[i1, j1].dy , im2[i2, j2] and im1[i1, j1]) and five
floating point multiplications and additions are required for
processing each pixel.

Algorithm 2 Least Squares Method with Iterative Refinement
1: Input: Two input image im1 and im2, partial derivative

matrix D, point (x, y) in im1, initial flow (u0, v0),
neighbor window size w, iteration number N .

2: Output: Optical flow (u, v) for point (x, y).
3: iter = 0, u = u0, v = v0
4: for iter = 0→ N do
5: x1 = x, y1 = y, x2 = x + u, y2 = y + v
6: a11 = 0, a12 = 0, a22 = 0, ab1 = 0, ab2 = 0
7: for i1 = y1−w → y1 +w, i2 = y2−w → y2 +w do
8: for j1 = x1−w → x1 +w, j2 = x2−w → x2 +w

do
9: dx = D[i1, j1].dx, dy = D[i1, j1].dy

10: dt = im2[i2, j2]− im1[i1, j1]
11: a11 = a11 + d2x
12: a12 = a12 + dx × dy
13: a22 = a22 + d2y
14: ab1 = ab1 + dx × dt
15: ab2 = ab2 + dy × dt
16: end for
17: end for
18: deta = a11a22 − a212
19: ia11 = a22/deta
20: ia12 = −a12/deta
21: ia22 = a11/deta
22: du = ia11ab1 + ia12ab2
23: dv = ia12ab1 + ia22ab2
24: if du, dv < threshold then
25: break
26: else
27: u = u + du, v = v + dv
28: end if
29: end for

Notice that the pixel intensity im2[i2, j2] and im1[i1, j1]
are stored separately in two matrices, and im2[i2, j2] is not a
regular data access (the indices are computed from the previous
flow update). In order to maximize the memory performance,
we manually unroll the loop by a factor of two to enable
SIMD load on the two input images. However since the starting
address of im2[i2, j2] is not predictable, we must use the
unaligned SIMD loads for them. Correspondingly, two pair of
dx and dy are read by aligned SIMD loads. On the C66, two
aligned SIMD loads can be packed into a parallelized VLIW
instruction and issued in one cycle, but when unaligned cannot
be parallelized. Three cycles are required for each memory
operation.

Our next optimization is to redesign the loop body for

SIMD arithmetic instructions. Algorithm 3 shows how com-
plex multiply instructions can compute all five products in
parallel. The product of d2x, d2y and dxdy can be com-
puted using the complex number multiplication instruction
CMPYSP. The CMPYSP instruction takes two register pairs
(src1 o, src1 e) and (src2 o, src2 e), and stores the four
results (src1 o ∗ src2 e, −src1 o ∗ src2 o, src1 e ∗ src2 o,
src1 e∗src2 e) into a register quad. If both of the operands of
CMPYSP are set to (dx, dy), we can retrieve the result of d2x,
d2y and dxdy with a single instruction. The dxdy value appears
twice in the result but only one is needed. Since the loop is
unrolled twice, we need to process two groups of dx and dy
per iteration. A similar strategy is used to compute dxdt and
dydt. Let the two consecutive dt values be stored in s 2’s array
dt[2], the two groups of dx and dy values stored in dxdy[2]
and d′xd

′
y[2]. From line 13 and 14 of the algorithm we have

dxdt values stored in b3 and c4, dydt values stored in a3 and
d4.

Algorithm 3 The Optimized Inner Loop of the Algorithm 2
1: Input: Two input image im1 and im2, partial derivative

matrix D, point (x, y) in im1, initial flow (u0, v0),
neighbor window size w, iteration number N .

2: Output: Optical flow (u, v) for point (x, y).
3: Perform line 3 to 6 of the Algorithm 2...
4: for i1 = y1 − w → y1 + w, i2 = y2 − w → y2 + w do
5: for j1 = x1 − w → x1 + w, j2 = x2 − w → x2 + w,

j1+ = 2, j2+ = 2 do
6: dxdy[2] = D[i1, j1] (aligned)
7: d′xd

′
y[2] = D[i1, j1 + 1] (aligned)

8: p0[2] = (im2[i2, j2], im2[i2, j2 + 1]) (unaligned)
9: p1[2] = (im1[i2, j2], im1[i1, j1 + 1]) (unaligned)

10: dt[2] = p1[2]− p0[2]
11: (a1, b1, c1, d1) = CMPY SP (dxdy[2], dxdy[2])
12: (a2, b2, c2, d2) = CMPY SP (d′xd

′
y[2], d′xd

′
y[2])

13: (a3, b3, c3, d3) = CMPY SP (dt[2], dxdy[2])
14: (a4, b4, c4, d4) = CMPY SP (dt[2], d′xd

′
y[2])

15: a11 = a12 − b1 − b2
16: a12 = a12 + c1 + c2
17: a22 = a22 + d1 + d2
18: ab1 = ab1 + b3 + c4
19: ab2 = ab2 + a3 + d4
20: end for
21: Handle the loop boundary condition...
22: end for
23: Perform line 18 to 29 of the Algorithm 2...

The size of the loop in Algorithm 3, line 5 is two times the
windows size. However, the iterations of this innermost loop
is software pipelined, so the iteration number must be large
enough to offset so the prologue and epilogue overhead. We
use a technique called loop flattening when the window size
is smaller than 20. The loop flattening transforms the nested
loops into a single loop to make the software pipeline longer.

Algorithm 4 shows the pseudo code of the loop flattening
procedure. Instead of using i, and j as the loop variable, it
updates the value of i and j inside the loop iteration.

Algorithm 4 Loop Flattening
1: Input: Two input image im1 and im2, partial derivative

matrix D, point (x, y) in im1, initial flow (u0, v0),
neighbor window size w, iteration number N .

2: Output: Optical flow (u, v) for point (x, y).
3: Perform line 3 to 6 of the Algorithm 2...
4: Initialize i1, j1, i2, j2
5: for n = 0→ 2w2 do
6: Perform computation of a11, a12, a22, ab1, ab2
7: Update the value of i1, j1, i2, j2
8: end for
9: Perform line 18 to 29 of the Algorithm 2...

TABLE I. RUN TIME (SECONDS) OF PYRAMID OPTICAL FLOW
COMPONENTS

time(ms) win size =4 win size =8 win size = 16

Gaussian Blur 2.1 2.1 2.1
Derivative Computation 0.9 0.9 0.9
Bilinear Interpolation 0.7 0.7 0.7
Least Squares Method 179 414 956

D. Multicore Utilization

As shown in Table I, the least squares method occupies
nearly all the running time. We swept the neighbor window
size while setting the pyramid level = 4 and iteration number
= 10. Since the running time of Gaussian blur, derivative
computation and bilinear interpolation is negligible compared
with the least squares method so they can be executed on single
core without impacting performance.

The master core (core 0) initializes data structure, loads
the images, and generates Gaussian pyramids and derivative
matrices. Then, eight cores will begin performing the least
squares method for the first level of the Gaussian pyramid.
The workload is uniformly distributed along the rows. A syn-
chronization is performed after each pyramid level is finished,
then core 0 will interpolate the Optical Flow field onto the
next level of the pyramid and then all the cores begin the least
squares computation on the next level.

IV. RESULTS AND ANALYSIS

In this section we summarize the scalability, performance,
and power efficiency results.

A. Experimental Setup

The accuracy of Pyramidal Lucas-Kanade method is de-
pendent on the parameter selection: window size, iteration
number, and number of pyramid levels. Marzat studied two
error metrics, average angular error and norm error on and
determined that an ideal parameter set is window size = 12,
iteration number = 6 and pyramid level = 4 [9]. We use these
values as our default parameters in our experiments.

We tested on an NVIDIA K20 GPU using the dense
Pyramidal Lucas-Kanade implementation in OpenCV 2.4.9.
Since OpenCV only provides a single-core sparse version of
Pyramidal Lucas-Kanade implementation on its CPU-based
implementation, we implemented our own multicore version
of Pyramidal Lucas-Kanade method with C++ and OpenMP
for the ARM Cortex-A9 and Intel i7-2600 CPU.

TABLE II. PERFORMANCE RESULT FROM DIFFERENT PLATFORMS

Platform/core# C66x/8 CortexA9/2 Intel i7-2600/4 Tesla K20

Gflops 15.42 0.77 17.19 108.61
core power (W) 5.73 4.85 52.50 79.00

Gflops/W 2.69 0.16 0.33 1.37

Fig. 3. Performance Study on Multicore

B. Performance and Power Efficiency Results

Table II lists the performance results of Pyramidal Lucas-
Kanade method on different platforms. The power consump-
tion of the DSP core is collected using the TI GPIO-USB
module, which reads voltage and current directly from the
onboard voltage regulator. For Intel CPU we use power results
collected from Intel RAPL and for GPU we use the NVIDIA
System Management Interface (nvidia-smi). The power con-
sumption results of the Cortex-A9 processor are collected from
a YOKOGAWA WT500 power analyzer.

Figure 3 shows the strong scalability of our DSP implemen-
tation relative to number of cores (each the test is performed
on 1920x1080 video). The performance and power efficiency
scales linearly, with eight cores providing 16 Gflops and 2.7
Gflops/W.

Figure 4 shows the system performance with different
frame sizes. As shown in this figure, the floating point through-
put is consistent except for 584x388 because the width is not
aligned with the L2 cache line size (64 bytes), which increases
the cache conflict miss rate.

Floating point throughput is not affected by the iteration
number or the pyramid level as they only affect the outermost

Fig. 4. Performance vs. Input Size

Fig. 5. Performance vs. Window Size

loop, but the window size controls the innermost loop and
thus affects the relative overhead imposed by the prologue
and epilogue of the software pipeline loop body. As shown
in Figure 5, floating point throughput scales with window
size, and loop flattening improves the performance when the
window size is small.

Let the image size be (m, n), pyramid level = p, iteration
number = t, window size = w, The total number of flop oper-
ation per pixel (assuming we use separated 7x7 Gaussian) can
be approximated by Equation 8. For example, if the window
size = 12, pyramid level = 4, iteration number = 6. the flop per
pixel is 76+10×12×12×6×(1+1/4+1/16+1/64) = 11551.
Figure 6 shows the number of C66x DSPs needed to reach a
processing speed of 30 real time fps based on extrapolating
our observed multicore scalability beyond eight cores.

fpp = 76 + 10× w2 × t×
∑p−1

i=0 (1/4)i

pps = Gflops/fpp× 109

fps = pps/(m× n)
(8)

C. DSP Performance Analysis

In this section we perform an analysis of the performance
efficiency of the least squares method. Our calculations are
based on 1920x1080 frame, pyramidal level = 4, iteration
number = 5, and window size = 16. We collect the running
time of the least squares method on single DSP core using a
performance counter, which is 13.5× 109 cycles.

The most inner loop of the least squares method (Algo-
rithm 3, line 6 to 9) requires two aligned and two unaligned
SIMD loads. Because the aligned SIMD load is parallelizable,
together they require 3 cycles of latency. The total number
of iterations of the most inner loop of the Algorithm 3 (line
5) can be computed by 16 × 8 × 5 × (1920 − 8) × (1080 −
8) × (1 + 1/4 + 1/16 + 1/64) = 1.74 × 109. 16 and 8 are

Fig. 6. Number of Cores Needed for Real-time 30 FPS

the trip count (cycles per iteration) of the nested loop and
there are 5 iterations. Each level of the pyramid requires one-
fourth the workload of the level below, so for example four
levels requires (1 + 1/4 + 1/16 + 1/64) = 1.3281 of the
workload of the first level. The actual cycles per iteration =
13.5 × 109/(1.74 × 109) = 7.75. From the assembler output
we know that after software pipeline optimization, each loop
iteration (Algorithm 3, from line 5 to line 20) requires 3 cycles
on average. The difference between this number and the actual
cycles per iteration computed previously is the memory stall
cycles, which is 7.75 - 3 = 4.75.

A C66x DSP core can execute two 2-way single precision
SIMD loads per cycle. The peak memory bandwidth is reached
when all the data read are from L1 cache with 1 cycle delay
(the cores do not support out of order execution). This gives a
maximum memory bandwidth of four single precision floating
point values per cycle. However, since the memory access of
the least squares method is composed of 50% of aligned loads
and 50% of unaligned loads and the unaligned load is half of
the bandwidth of aligned load (Algorithm 3, line 6 to 9), the
maximum bandwidth of the memory operation is (4 + 2) / 2
= 3 single precision floating point values per cycle.

Each iteration of the loop on line 5 of Algorithm [?]
performs 20 floating point operations and accesses 8 single
precision floating point values. The compute-to-memory ratio
is 20 / 8 = 2.5. Since the actual cycles for issuing memory
operation per iteration is 3 and the memory stall cycles is
4.75, the memory achieves 3 / (4.75 + 3) = 38% of its
maximum bandwidth. Combined together with the compute-to-
memory ratio = 2.5 and maximum number of single precision
floating point value reads per cycle is 3, we get the theoretical
peak performance = 0.38 × 3 × 2.5 = 2.85 flops/cycle. At
1 GHz this is 2.85 Gflops. We compute the total number
of flop operations in the least squares method, which is
1.74× 109× 20 = 34.8× 109. The actual Gflops is calculated
by total number of flops divided by the actual running time
in cycle, which is 34.8 × 109/(13.5 × 109) = 2.57 Gflops.
The utilization ratio is 2.57 / 2.85 = 90%. This value shows

the efficiency of our implementation in terms of hardware
utilization.

V. RELATED WORK

Efficiently mapping Lucas-Kanade method has been stud-
ied for many years [3], [10]. Among those methods, Marzat et
al. implement Pyramidal Lucas-Kanade method on Tesla C870
GPU workstation [9]. Their baseline algorithm is the same as
the one targeted in this paper. Their performance test is per-
formed with parameters set to image size = 640x480, iteration
number = 3, neighbor window size = 10, pyramid level = 4 and
are able to achieve an overall 68 ms per frame. We compute
from their time performance results the performance of their
implementation = 18.4 Gflops and power efficiency = 0.11
Gflop/W, which is 8% of our DPS implementation. Related
work on hardware acceleration of other optical flow methods
can be found in [11], [12], [13], [14].

VI. ACKNOWLEDGEMENTS

We would like to thank Arnon Friedmann, Murtaza Ali,
and Alan Ward from Texas Instruments and Emily Teng from
Advantech Corporation for their support of this work. This
material is based upon work supported by Texas Instruments
and the National Science Foundation under grant No. 0844951.

REFERENCES

[1] S. S. Beauchemin and J. L. Barron, “The computation of optical flow,”
ACM Computing Surveys, vol. 27, pp. 433—466, 1995.

[2] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” Proceedings of the 7th Interna-
tional Joint Conference on Artificial Intelligence, pp. 674–679, 1981.

[3] D. Javier and R. Eduardo, “Superpipelined high-performance optical-
flow computation architecture,” Comput. Vis. Image Underst., vol. 112,
no. 3, pp. 262–273, 2008.

[4] E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the
perception of motion,” Journ. Opt. Soc. Am., pp. 284–299, 1985.

[5] D. J. Fleet and A. D. Jepson, “Computation of component image
velocity from local phase information,” IJCV, pp. 3057–3079, 1995.

[6] B. Horn and B. Schunck, “Determine optical flow,” Artificial Intelli-
gence, vol. 17, pp. 185—203, 1981.

[7] R. Kories and G. Zimmerman, “A versatile method for the estimation
of displacement vector fields from image sequences,” IEEE Proc. of
Workshop on Motion-Representation and Analysis, pp. 101—106, 1986.

[8] D. S. Kalivas and A. A. Sawchuk, “A region matching motion estimation
algorithm,” CVGIP, pp. 275–288, 1991.

[9] J. Marzat and Y. Dumortier, “Real-time dense and accurate parallel
optical flow using cuda,” WSCG, pp. 105–111, 2009.

[10] M. Anguita, J. Diaz, E. Ros, and F. Fernandez-Baldomero, “Opti-
mization strategies for high-performance computing of optical-flow in
general-purpose processors,” Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 19, no. 10, pp. 1475–1488, Oct 2009.

[11] Y. Mizukami and K. Tadamura, “Optical flow computation on com-
pute unified device architecture,” International Conference on Image
Analysis and Processing, pp. 179–184, 2007.

[12] A. Bruhn and J. Weickert, “Variational optical flow computation in real
time,” IEEE Transaction on Image Processing, pp. 608–615, 2005.

[13] J. L. Martn and A. Zuloaga, “Hardware implementation of optical
flow constraint equation using fpgas,” Computer Vision and Image
Understanding, vol. 98, no. 3, pp. 462—490, 2005.

[14] A. Plyer, G. Besnerais, and F. Champagnat, “Massively parallel
lucas kanade optical flow for real-time video processing applications,”
Journal of Real-Time Image Processing, pp. 1–18, 2014. [Online].
Available: http://dx.doi.org/10.1007/s11554-014-0423-0

