
Sparse Matrix-Vector Multiply on the
Keystone II Digital Signal Processor

Yang Gao1,2, Fan Zhang1,2, and Jason D. Bakos1,3

1Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
2{gao36,zhangf}@email.sc.edu

3jbakos@cse.sc.edu

Abstract—In this paper we describe an implementation of
sparse matrix-vector multiply (SpMV) on the Texas Instruments
(TI) Keystone II architecture. The Keystone II is an eight
core Digital Signal Processor (DSP) that offers floating point
performance comparable to a desktop CPU while having a power
envelope comparable to a mobile embedded CPU. This, combined
with its integrated communication interfaces, potentially make
it a scalable and efficient HPC processor technology. For this
architecture, the key to achieving high computational efficiency
is the careful use of its on-chip scratchpad memory. SpMV is a
HPC kernel that is both memory bounded and has an irregular
memory access pattern. When tuning this kernel, we found that
using scratchpad can provide as much as 50% improvement in
effective memory bandwidth as compared to using cache, but only
with careful scratchpad allocation and run-time management.
This includes selection of tile size, the mapping of arrays to
specific on-chip memory structures, and the methods by which
the DMA is performed in parallel with computation.

I. INTRODUCTION

It has recently become common practice to integrate co-
processors into high-performance computers, and graphical
processor units (GPUs) are currently the most common co-
processor technology. GPU coprocessors generally improve
overall energy efficiency as compared with systems having
only CPUs [1][2]. Despite this, energy efficiency remains a
major constraint in high performance computer design: the
most efficient HPC systems are limited to 4.5 Gflops/W,
implying that an exascale machine would require 100s of
MW to operate at full capacity using current technology.
This has served as a motivation to explore radically new
processor technologies. One potential alternative to traditional
CPU+GPU processors are Digital Signal Processors (DSPs),
whose principal difference from CPU and GPU architectures is
that they are statically scheduled and rely mainly on program
and compiler optimization for performance. Of the newest
generation of DSP, the Texas Instruments Keystone II archi-
tecture is also unique in that it adopts a system-on-chip (SoC)
design, similar to embedded processors, integrating ARM-
based CPUs, DSP-based coprocessors, and high speed network
interfaces onto a single die. When clocked at 1.35 GHz,
an eight-core C66 device has a peak theoretical throughput
of 172.8 single precision Gflops and achieves 80 sustained
Gflops/s for single precision general matrix-matrix multiply
(SGEMM) using the current version of TI’s BLAS library[3].

The C66 lacks out-of-order and speculative execution. Instead,
it exploits instruction level parallelism using an eight-way
very long instruction word (VLIW). C66 cores are loosely
coupled and thus do not include a shared last-level cache.
Their onchip memory can be reconfigured by the software
such that a portion or all of one or both level of caches can
be used as a scratchpad memory. There is also a separate
scratchpad memory that are shared among the cores. This
flexibility provides the ability to improve memory system
performance by mapping different data structures to either
cache, scratchpad, or both. In this study, we chose the sparse
matrix-vector multiply kernel using the Compressed Sparse
Row (CSR) format as a case study. This kernel’s performance
is closely correlated with the achieved performance of the
memory hierarchy due to its low arithmetic intensity and high
memory intensiveness.

II. SPMV KERNEL

SpMV performs the computation Y = AαX + βY , where
A is a matrix stored in a sparse format, X and Y are vectors
stored as dense 1D arrays, and α and β are scalars. Our SpMV
kernel uses the popular Compressed Sparse Row (CSR) sparse
matrix format, where matrix A is represented using three one-
dimensional arrays, val, col, and ptr. The val array holds each
of the matrixs non-zero values in ascending column and row
order, while the col array holds each values corresponding
column index. The ptr array is indexed by row and holds
the position within the val and col array where each matrix
row begins. For example, an M x N matrix where M =
2 could be stored using arrays: val = {2, 4, 6, 8, 10, 12},
col = {2, 3, 4, 5, 3, 5}, and ptr = {0, 4, 6}. In this case, the
matrix contains ptr[M] = 6 nonzero elements, the second row
contains ptr[2]−ptr[1] = 2 elements, and the second element
of row 1 is val[ptr[1]+1] = 12 in column col[ptr[1]+1] = 5.
There are several reasons why sparse matrix-vector multiply
with CSR format is a notoriously difficult kernel for which
to achieve high functional unit utilization. First, the col array
imposes gather-style indirect references to the input vector X ,
and the locality of the irregular accesses to X depends on the
distribution of populated columns (defined in the col array).
Second, the unpredictable number of entries per matrix row,
as defined by the ptr array, requires dynamic control behavior
when computing the reduction operation when accumulating

978-1-4799-6233-4/14/$31.00 ©2014 IEEE

the inner product. Third, the entire operation is generally
memory-bound for modern processors, requiring roughly 3/8
floating point operations per byte for single precision values
and 32-bit indices, where n is average number of entries per
matrix row (shown later in Equation 2Efficiencyequation.4.2).
As a result of these challenges, modern state-of-the-art CPUs
and GPUs generally achieve 1-5% of their peak throughput
for this computation depending on the density and structure
of the matrix [4].

III. IMPLEMENTATION

As is the case with GPUs, the C66 achieves high per-
formance only when the software is carefully hand-tuned
to exploit specific aspects of its architecture. Unfortunately,
unlike GPUs, there is little established methodology or best
practices for kernel tuning. In this section we describe how
we map the SpMV naı̈ve implementation to a DMA supported
double buffer kernel with optimized usage of the scratchpad
memory.

A. Naı̈ve implementation

The basic implementation of SpMV was a simple, naı̈ve
loop that directly performs the kernel as shown in Algorithm
1Naı̈ve Implementationalgorithm.1.

Algorithm 1 Naı̈ve Implementation
Input: val, col, ptr, y, x, α, β

1: row ← initial row
2: for i = coreNum × (M/cores) → (coreNum + 1) ×

(M/cores)− 1 do
3: if ptr [row] == i then
4: row ← row + 1
5: y [row]← y [row]× β
6: end if
7: y [row]← y [row] + α× val [i]× x [col [i]]
8: end for

B. Mapping to DSP Double Buffered implementation

Each DSP core has a 32KB L1 SRAM and 1024KB L2
SRAM that can be programmatically configured to behave
as a traditional cache, as a program-controlled scratchpad
memory, or as a combination of both, with arbitrary portions
assigned as cache and scratchpad. This organization resembles
the shared memory in GPUs, allowing shared access within a
thread block. Besides the L1 and L2 on-chip memory, another
6MB SRAM called the Multicore Shared Memory Controller
(MSMC) is also available to all eight DSP cores. Since this
memory is sharable by all cores, there is no equivalent on
contemporary GPUs. To support the on-chip memories, the
device also contains an integrated direct data access (DMA)
controller that allows data to be exchanged between on-
and off-chip memories (and between on-chip memories) in
parallel to operations being performed on the DSP. The DMA
controller can also be programmed to perform complex 3-
dimensional data access patterns on both the source and

destination memories. Data accessed in a predictable, regular
access pattern can be concurrently prefetched using EDMA to
exchange data between scratchpad and DRAM. Data accessed
irregularly in a data-dependent pattern can be cached in a
separate region of scratchpad to take advantage of locality.
In our implementation, we allocated a portion of the L2 cache
as a scratchpad and used the DMA controller to implement
a double buffer for the val and col arrays. The input vector,
output vector, and ptr could be simply cached or mapped to
a circular buffer.

Our SpMV implementation is also tuned to maximize
functional unit utilization. We used loop fission to separate
the control independent calculations from the dependent cal-
culations: a “product loop” and an “accumulate loop” as
illustrated in Algorithm 2Loop Fissionalgorithm.2. Each loop
is tiled, processing each block of M entries allocated to the
scratchpad SRAM. In order to maximize the utilization of the
8-way VLIW instructions, the TI compiler attempts to software
pipeline any loop that doesn’t contain branch instructions or
function calls. Software pipelining allows the compiler to
break dependencies within the loop body and improve the
functional unit utilization at the cost of increased register usage
(each core has two 32 x 32 bit register files). The product loop
has no dependencies and can be software pipelined by the
compiler, resulting in high computational performance, but is
limited by memory bandwidth to store the products. In order to
further speed up the product loop we allocated L1 scratchpad
memory to hold the product array. The IF statement on line
3 of Algorithm 1Naı̈ve Implementationalgorithm.1 prevents
the compiler from applying software pipelining. In order to
enable this feature, we converted the code to assembly lan-
guage and implemented the conditional code with predicated
instructions as opposed to a branch instruction as was used
by the compiler-generated code. The TI assembler was able
to software-pipeline this assembly language.

We used DMA to transfer blocks of the val and col
arrays to L2 scratchpad. This allowed for the DSP core
to process the previous block while transferring the next
block from DRAM. However, the if-statement in Algorithm
1Naı̈ve Implementationalgorithm.1 and Algorithm 2Loop
Fissionalgorithm.2 makes it difficult to apply this technique to
the Y and ptr arrays. Although these arrays are accessed as a
contiguous block of data, they do not need to be transferred
at the same time as val and col because they are consumed at
a different rate (determined by matrix sparsity).

Specifically, assuming all scratchpad buffers are of equal
size, a new Y and ptr buffer would need to be transferred from
memory n/r times less frequently than the val and col buffers,
where n = size of the val array and r = size the of ptr array.
As such, in order to add DMA support to the Y and ptr buffer
we must synchronize all DMA transfers. In order to do this,
we must be able to initiate a new DMA transfer to fill a Y and
ptr scratchpad buffer before it has been completely emptied.
Internal DMA (IDMA) is a feature that is designed to transfer
content between the on-chip memories. Using this feature we
implemented a special circular buffer scheme for ptr and Y

Algorithm 2 Loop Fission
Input: val, col, ptr, y, x, α, β

1: for i = 0→M do //product loop
2: prod [i]← α× val [i]× x [col [i]]
3: end for
4: Acc← 0
5: for i = 0→M step by K do //accumulation loop
6: Acc← Acc+ prod [i]
7: if ptr [row] == i then
8: row ← row + 1
9: y [row]← y [row]× β +Acc

10: Acc← 0
11: end if
12: Acc← Acc+ prod [i+ 1]
13: if ptr [row] == i+ 1 then
14: row ← row + 1
15: y [row]← y [row]× β +Acc
16: Acc← 0
17: end if
18: . . .
19: Acc← Acc+ prod [i+K]
20: if ptr [row] == i+K then
21: row ← row + 1
22: y [row]← y [row]× β +Acc
23: Acc← 0
24: end if
25: end for

which is depicted in Figure 1(a) the logical organization of
the buffer, (b) buffer state before the accumulation loop, (c)
buffer state after the accumulation loop, (d) IDMA and DMA
transfers performed.figure.caption.1.

Assume we have one scratchpad buffer for the ptr array
with c entries and a traditional double buffer for the val array
named valA and valB. When the kernel consumes the last value
in valA assume that n remain unread in the ptr buffer. At this
time, the kernel actives the full valB buffer and initiates a new
DMA transfer to fill valA from DRAM. If the ptr buffer is less
than half full, the kernel uses IDMA to copy the remaining
entries to the beginning of the ptr buffer, and then (after a
barrier) initiates a DMA from DRAM to replenish the buffer.
Assuming the matrix has, on average, at least one entry per
row, the ptr array will not be consumed faster than the val
array and this method will function correctly.

Note that for most matrices the IDMA copy will not be
performed every time a val buffer is emptied. When the IDMA
transfer does occur, it must complete before the subsequent
DMA transfer from DRAM. However, instead of waiting, the
kernel overlaps the IDMA transfer with the product loop in
Algorithm 2Loop Fissionalgorithm.2.

The accumulation loop in Algorithm 2Loop
Fissionalgorithm.2 checks if value i is the first value of
its row before every add operation (line 21). This adds a
substantial amount of overhead to this loop. In order to reduce

Fig. 1: (a) the logical organization of the buffer, (b) buffer
state before the accumulation loop, (c) buffer state after the
accumulation loop, (d) IDMA and DMA transfers performed.

this overhead, we added an optimization where, at the start of
the loop body, the code checks the number of values remaining
on the current row, i.e. ptr[row + 1]ptr[row]. If this value is
> 8, a new inner loop can perform (ptr[row+1]ptr[row])/8
unrolled iterations without checking the row pointer. We
arrived at the unroll factor of 8 by tuning. In addition,
we also use the 2-way SIMD ADD to further improve the
performance. This optimization has more of a benefit for
denser matrices (Table IIISpMV Performance on DSP, CPU,
and GPUtable.caption.5).

C. Tile Size and Buffer Locations

As shown in Figure 2Memory System
Usagefigure.caption.2, on chip buffers can be allocated
in L1 scratchpad, L2 scratchpad, shared memory (MSMC) or
referenced from DRAM and cached. The L1 SRAM has the
lowest latency but has a small capacity (32KB), which makes
it difficult to perform large enough DMA transfers to offset
the start-up overheads required to initiate a DMA transfer.
The L2 memory is 32 times larger but has less bandwidth
and higher latency relative to the DSP. The MSMC is tightly
integrated with the DRAM controller in the Keystone II
design, but it lacks support for cache coherency. Using cache
avoids the DMA start-up overhead but may be subject to a
high conflict miss rate.

These features provides the programmer flexibility but allo-
cating and managing the on-chip memory requires decisions
that are governed by a complex set of trade-offs. One of
the important trade-offs to consider when using program con-
trolled scratchpad is that the programmer must add additional
branch instructions to the code in order to maintain the
buffers. The number of additional branch instructions can be
reduced when multiple buffers that have equal consumption
rate can be set to the same size and thus their management
can be synchronized. However, allocation of these buffers is
constrained by the access pattern of the corresponding data
structure.

TABLE I: Buffer Location and Performance

Non-
zeroes

per
row

val col ptr y prod Gflops Norm.
Perf.1 Note

3 S L2 L2 L2 L1 2.26 1.57 Best
S L2 L2 L2 L2 1.84 1.28 Median
L2 L2 C C S 1.23 0.85 Worst2
C C C C C 1.44 1 All Cache

151 L2 S L2 L2 L2 3.76 1.50 Best
S C L2 L2 S 3.55 1.41 Median
C C C C L2 2.66 1.06 Worst2
C C C C C 2.51 1 All Cache

L1:level 1 SPRAM, L2:level 2 SPRAM, S:MSMC, C:cache
1: The results are normalized to the all cache configuration
2: The worst amongst the configurations with SPRAM

The val and col buffers are most flexible and could be placed
all locations and simply cached. The circular buffer of ptr and
Y rely on IDMA to achieve both efficiency and overlapping
with computation. These buffers cannot be allocated to MSMC
because it cannot be written with internal DMA. The prod
buffer is an internal data array that is accessed sequentially.

Our SpMV kernel is parameterizable, allowing each buffer
to be sized and allocated at run-time using a given configu-
ration. In order to evaluate the impact of allocation decisions,
we ran the kernel against a full enumeration of valid buffer
mappings. In order to test matrices with difference sparsity, we
used two test matrices: one containing 3 consecutive elements
per row and one with 151 elements per row.

Table IBuffer Location and Performancetable.caption.3, lists
the best, median, and worst performance given by set of
scratchpad mappings, as well the performance given when
using cache for all arrays. Note that both test matrices give a
different best result, meaning that best tile size and mapping
configuration depends on the density of the input matrix. The
performance is most sensitive to the usage of L1 and the tile
size. The largest possible tile size is 16KB when mapping the
prod array to L1. This configurable gives us the best result
when processing the sparser matrix.

However, when processing the denser matrix it takes longer
for the kernel to reach the end of the row. This reduces the
average number of instructions per matrix value, allowing the
buffers to be consumed faster and shifts the bottleneck to the
background DMA transfers. As a result, in this case a larger
buffer is more favorable.

Table IBuffer Location and Performancetable.caption.3 also
lists the configurations that emphasizes the impact of using
the cache instead of the scratchpad. The results are normalized
to the pure cache mapping which serves as the baseline. We
found that the pure scratchpad implementation achieves about
50% speedup as compared with using cache.

For the results shown below, we use the best allocation given
by the sparser matrix, since our test matrices are closer in
density to 3 elements/row than 151 elements/row [4] [5].

Fig. 2: Memory System Usage

IV. EFFICIENCY

Recall that SpMV performs the operation Y = AαX+βY .
For single precision values and 32-bit indices, each non zero
value in A, requires two multiplies (Aij × α × Xj) and one
add (to compute the dot product). This requires a load of a
four-byte Aij value, a four-byte column index j, and a four-
byte vector value X . If we assume that X is transferred only
once from RAM, these three operations require (8+4)/rows
bytes due to compulsory misses.

For each matrix row, the kernel performs an additional
multiply (β × Yi) and add (to Yi) which requires a four-byte
load and subsequent store to Y and a four-byte load from the
ptr array. As such, SpMV has an arithmetic intensity (AI) of

AI =
nnz × 3ops+ rows× 2ops

nnz × 2× 4bytes+ rows× 3× 4bytes+ cols× 4bytes
(1)

=
nnz × 3 + rows× 2

nnz × 8 + rows× 12 + cols× 4
ops/byte (2)

For most modern architectures, this level of arithmetic inten-
sity makes SpMV a memory-bound operation. This allows us
to compute the performance bound as the product of arithmetic
intensity and peak memory bandwidth. Our platform has
a peak memory bandwidth of 12.8 GB/s on one DRAM
interface, giving a performance bound of 12.8×AI , while our
desktop GPU has a peak memory bandwidth of 192.3 GB/s,
giving a throughput bound of 192.3×AI Gflops.

The ratio of actual performance to the performance bound
is the efficiency, defining how much of the available memory

TABLE II: Summary of Test Platforms

Intel i7
3770K
MKL

NVIDIA
GTX 680

cuSPARSE

NVIDIA
Tegra K1

cuSPARSE

TI
6638K2K

Arch Ivy Bridge Kepler Kepler KeystoneII
Memory

B/W 25.6 GB/s 192.3 GB/s 17.1 GB/s 12.8 GB/s

TDP 77 W 195 W ∼10 W ∼15 W
SPRAM
KB/core n/a 64/641 64/641 32/1024/7682

Single
Precision

Peak
Throughput

448 Gflops 3090 Gflops 365 Gflops

@1.35 GHz
172.8 Gflops

(DSP)
+44.8 Gflops

(ARM)

1: Register file/allocable share memory or L1.
2: L1 SRAM / L2 SRAM / MSMC per core

bandwidth is actually being used by the kernel. This metric
is an important indicator of the effectiveness of the kernel
implementation and the memory system (e.g. cache).

V. TEST PLATFORMS

As shown in Table IISummary of Test
Platformstable.caption.4, our reference CPU is a four-
core Core i7 CPU and our test GPUs are a desktop GPU
(NVIDIA GTX 680) and embedded GPU (Tegra K1). Our
CPU results are given by Intel’s Math Kernel Library
(MKL) [6] and our GPU results are given by the NVIDIA
cuSPARSE [7] library. Since these libraries were developed
and optimized by Intel and NVIDIA, respectively, we assume
that their performance represents a reasonable evaluation of
the maximum capabilities of the corresponding processors.

VI. EXPERIMENTAL RESULTS

Table IIISpMV Performance on DSP, CPU, and
GPUtable.caption.5 lists the performance results of the
DSP, CPU, and GPU using matrices from and the Matrix
Market [4] and University of Florida Matrix Collection [5].
The table is sorted by matrix density, in terms of average
number of elements per row, and shows the raw performance,
power efficiency, and percentage of memory bandwidth used
(shown as kernel efficiency) for each matrix.

In our experiment, the CPU generally achieves higher
memory efficiency than the DSP. We assume this is because
Intels memory system is able to pre-fetch the cache blocks for
each of the sequentially-accessed arrays (val, col, ptr, and Y)
before they generate cache misses, which may approximate
the behavior of double buffering using DMA. Also, because
of its larger caches, it may achieve higher performance when
accessing the X array.

One of the parameters in Equation 1Efficiencyequation.4.1
is number of matrix entries per row, which we use to calculate
the access rate of the Y and ptr arrays. For the test cases
below, we specify this as an average, since none of matrices
contain a consistent number of entries per row. In one matrix
(lhr71c), a high variance in the number of entries per row

causes our calculated arithmetic intensity to appear lower than
it is in reality. This matrix also has a relatively small X vector,
yielding a high achieved efficiency, leading to a calculated
efficiency of > 100%.

As compared to the desktop GPU, the DSP generally
achieves 5 - 10 X less performance while having 15 X less
memory bandwidth. This is because the DSP is generally
able to achieve twice the memory efficiency of the GPU. The
DSP consistently outperforms the embedded GPU, despite the
embedded GPU’s higher peak memory bandwidth (17.1 GB/s
vs. 12.8 GB/s). The DSP’s memory efficiency is comparable
to the CPU for the denser matrices, despite the CPU having a
TDP that is 5 X that of the DSP.

VII. RELATED WORK

Optimizing sparse matrix-vector multiply on emerging ar-
chitectures has been the subject of much recent work [8–
11] . To our best knowledge, this is the first implementation
of SpMV on the current generation of the TI Keystone II
architecture. Our previous work described a similar SpMV
implementation on TIs Keystone architecture[12].

There has been some recent work in dense linear algebra on
this architecture, demonstrating 80 single precision Gflops for
SGEMM[13]. There has also been recent interest in improving
the performance or power efficiency of SpMV on GPUs [14–
20].

VIII. CONCLUSION

In this paper we described the optimization and performance
of a sparse matrix vector multiply kernel on the TI Keystone
II architecture. We were able to achieve a 50% performance
improvement as compared to using cache by using allocation
and runtime management of the onchip scratchpad memory.

On average for our test matrices, our performance results
show a 2.7X and 7.4X slowdown compared to the CPU and
desktop GPU respectively, and a 1.27 speedup compared to
the mobile GPU. The DSP’s low performance as compared
with the CPU and desktop GPU can be attributed to the DSPs
relatively low memory bandwidth. Despite this, the DSP is
able to utilize roughly 2 X of its peak memory bandwidth as
compared to the desktop and embedded GPUs.

IX. ACKNOWLEDGEMENTS

We would like to thank Arnon Friedmann, Murtaza Ali,
and Alan Ward from Texas Instruments and Emily Teng from
Advantech Corporation for their support of this work. This
material is based upon work supported by Texas Instruments
and the National Science Foundation under grant No. 0844951.

REFERENCES

[1] J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler,
V. Kindratenko, J. E. Stone, and J. C. Phillips, “Quantifying the impact
of gpus on performance and energy efficiency in hpc clusters,” in Green
Computing Conference, 2010 International. IEEE, 2010, pp. 317–324.

[2] S. Hemmert, “Green hpc: From nice to necessity,” Computing in Science
and Engineering, vol. 12, no. 6, pp. 8–10, 2010.

TABLE III: SpMV Performance on DSP, CPU, and GPU

Matrix Name Ave. entries/row
Performance

(Gflops)
DSP CPU GPU11 GPU22

Kernel Efficiency

DSP CPU GPU1 GPU2
mc2depi 4.0 2.16 5.46 17.79 1.64 0.58 0.73 0.32 0.33
shyy161 4.3 1.56 5.71 15.43 1.55 0.41 0.75 0.27 0.31
scircuit 5.6 2.02 4.89 14.30 1.35 0.51 0.62 0.24 0.26

ASIC 100ks 5.8 2.21 5.55 11.01 1.43 0.55 0.70 0.18 0.27
mac econ fwd500 6.1 2.13 6.50 12.51 1.36 0.53 0.81 0.21 0.25

thermal1 6.9 2.09 4.32 11.19 1.14 0.56 0.58 0.20 0.23
lhr71c 21.7 2.34 9.86 16.54 1.89 0.52 1.08 0.24 0.31
ldoor 24.9 2.66 6.78 22.82 2.36 0.58 0.74 0.33 0.39

shipsec1 25.0 2.98 7.73 23.63 2.48 0.65 0.84 0.34 0.41
pwtk 52.9 2.27 7.63 24.70 2.37 0.50 0.83 0.36 0.39
cant 64.2 3.08 8.79 23.97 2.54 0.67 0.95 0.35 0.41

consph 72.1 3.30 8.16 22.98 2.58 0.71 0.88 0.33 0.42
audikw 1 82.3 3.21 7.53 21.79 2.63 0.69 0.81 0.31 0.43

m t1 99.9 3.44 7.94 21.58 2.63 0.73 0.85 0.31 0.42
pdb1HYS 119.3 3.73 8.82 20.85 2.60 0.79 0.94 0.30 0.42

TSOPF FS b300 c3 155.6 2.96 6.60 30.30 2.57 0.63 0.70 0.43 0.41

AVERAGE 47 2.63 7.02 19.5 2.07 0.60 0.80 0.29 0.35

1: GTX 680 2: Tegra K1

[3] M. Ali, E. Stotzer, F. D. Igual, and R. A. van de Geijn, “Level-3 blas
on the ti c6678 multi-core dsp,” in Computer Architecture and High
Performance Computing (SBAC-PAD), 2012 IEEE 24th International
Symposium on. IEEE, 2012, pp. 179–186.

[4] R. F. Boisvert, R. Pozo, K. A. Remington, R. F. Barrett, and J. Dongarra,
“Matrix market: a web resource for test matrix collections.” in Quality
of Numerical Software, 1996, pp. 125–137.

[5] T. A. Davis and Y. Hu, “The university of florida sparse matrix collec-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, p. 1, 2011.

[6] Intel, “Intel math kernel library.” [Online]. Available:
https://software.intel.com/en-us/intel-mkl/

[7] NVIDIA, “Cublas libraries.” [Online]. Available:
https://developer.nvidia.com/cusparse

[8] Y. Shan, T. Wu, Y. Wang, B. Wang, Z. Wang, N. Xu, and H. Yang, “Fpga
and gpu implementation of large scale spmv,” in Application Specific
Processors (SASP), 2010 IEEE 8th Symposium on. IEEE, 2010, pp.
64–70.

[9] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix–vector multiplication on emerging mul-
ticore platforms,” Parallel Computing, vol. 35, no. 3, pp. 178–194, 2009.

[10] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
“Performance evaluation of the sparse matrix-vector multiplication on
modern architectures,” The Journal of Supercomputing, vol. 50, no. 1,
pp. 36–77, 2009.

[11] N. Bell and M. Garland, “Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis. ACM, 2009, p. 18.

[12] Y. Gao and J. D. Bakos, “Sparse matrix-vector multiply on the texas
instruments c6678 digital signal processor,” in Application-Specific
Systems, Architectures and Processors (ASAP), 2013 IEEE 24th Inter-
national Conference on. IEEE, 2013, pp. 168–174.

[13] F. D. Igual, M. Ali, A. Friedmann, E. Stotzer, T. Wentz, and R. van de
Geijn, “Unleashing dsps for general-purpose hpc,” 2012.

[14] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of
sparse matrix-vector multiply on gpus,” in ACM Sigplan Notices, vol. 45,
no. 5. ACM, 2010, pp. 115–126.

[15] F. Vazquez, G. Ortega, J.-J. Fernández, and E. M. Garzon, “Improving
the performance of the sparse matrix vector product with gpus,” in Com-
puter and Information Technology (CIT), 2010 IEEE 10th International
Conference on. IEEE, 2010, pp. 1146–1151.

[16] H. Anzt, M. Castillo, J. C. Fernández, V. Heuveline, F. D. Igual,
R. Mayo, and E. S. Quintana-Ortı́, “Optimization of power consumption
in the iterative solution of sparse linear systems on graphics processors,”

Computer Science-Research and Development, vol. 27, no. 4, pp. 299–
307, 2012.

[17] H. Anzt, V. Heuveline, J. I. Aliaga, M. Castillo, J. C. Fernández,
R. Mayo, and E. S. Quintana-Ortı́, “Analysis and optimization of power
consumption in the iterative solution of sparse linear systems on multi-
core and many-core platforms,” in Green Computing Conference and
Workshops (IGCC), 2011 International. IEEE, 2011, pp. 1–6.

[18] A. J. Wijs and D. Bošnački, “Improving gpu sparse matrix-vector
multiplication for probabilistic model checking,” in Model Checking
Software. Springer, 2012, pp. 98–116.

[19] J. Godwin, J. Holewinski, and P. Sadayappan, “High-performance sparse
matrix-vector multiplication on gpus for structured grid computations,”
in Proceedings of the 5th Annual Workshop on General Purpose
Processing with Graphics Processing Units. ACM, 2012, pp. 47–56.

[20] W. Xu, H. Zhang, S. Jiao, D. Wang, F. Song, and Z. Liu, “Optimizing
sparse matrix vector multiplication using cache blocking method on
fermi gpu,” in Software Engineering, Artificial Intelligence, Network-
ing and Parallel & Distributed Computing (SNPD), 2012 13th ACIS
International Conference on. IEEE, 2012, pp. 231–235.

