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Abstract—The accumulation operation Anew = Aold + X is 

required for many numerical methods.  However, when using a 
floating-point adder with pipeline latency �, the data hazard that 
exists between Anew and Aold creates design challenges for 
situations where inputs must be delivered to the accumulator at a 
rate exceeding 1/�.  Each of the techniques proposed to address 
this problem requires either static data scheduling or overly 
complex micro-architectures having multiple adders, a large 
amount of memory, or control overheads that force the 
accumulator to operate at a diminished speed relative to the 
adder on which it is based.  In this paper we present a design for 
a double precision accumulator that achieves high performance 
without the need for data scheduling or an overly complex 
implementation.  We achieve this by integrating a coalescing 
reduction circuit within the low-level design of a base-converting 
floating-point adder.  When implemented on our Virtex-2 Pro 
100 FPGA, our design achieves a speed of 170 MHz. 

I. INTRODUCTION 
The accumulation operation must be performed in any 

special-purpose architecture that performs a computation that 
requires a summation.  When used as a component of a micro-
architecture that supplies a new value to the accumulator 
every clock cycle, the designer cannot use a simple feedback-
based accumulator circuit if the adder has a latency greater 
than one cycle, since the latency prevents the adder from 
providing the current sum before the next value to be 
accumulated arrives.  To make matters worse, in many 
applications the incoming values belong to different 
accumulation sets and there is no separation between values 
belonging to different sets.  This further complicates the 
accumulator design. 

FPGA kernel designers have dealt with this problem using 
a number of different methods.  Older designs used a static 
approach, where inputs were delivered to the accumulator in 
an ordering where the values belonging to different 
accumulation sets were interleaved according to the latency of 
the adder [ 1 ].  Newer designs use a dynamic approach.  
Prasanna’s group at the University of Southern California has 
written several seminal papers in this area [2,3,4].  Their most 
recent design requires two memories of size �2 and a 
significantly complex controller that makes the reduction 
circuit operate more slowly than the adder upon which it is 
based.  An improved single-adder reduction architecture was 
later developed at the University of Twente [ 5 ].  This 
architecture reduced the memory requirement to 

� � 2lg3 �� ���  but still required complex control. 
Both of these designs are based on instancing pre-made 

floating-point adders into a top-level reduction architecture.  

In an alternative approach, which is limited to single-precision, 
the adder itself is changed such that its de-normalization and 
significand addition step are designed to have a single cycle 
latency and a feedback loop is formed over only this stage.  
Since the only portions of a floating-point adder that need be 
involved in the accumulator’s feedback loop are the de-
normalize and significand addition, this turns the adder into an 
accumulator.  The other aspects of the adder, specifically 
those that deal with IEEE 754 formatting, need not be 
included in the adder data path.  In order to make this 
approach practical, the designer must minimize the latency 
across both the de-normalize (composed of a comparison and 
subtraction of the exponents) and the significand addition (an 
integer addition).  Intel and a group from Princeton 
accomplished this by increasing the integer adder width while 
decreasing the width of the exponent comparator by 
converting the significand from base-2 to base-32 [6,7]. 

Our goal is to design a double precision accumulator that 
requires minimal memory and control logic such that its speed 
is limited only by the speed of the significand adder.  Because 
double precision requires a wider exponent compare and 
significand addition, we pipeline this portion of the 
architecture instead performing this in a single stage.  To 
solve the resultant internal data hazard, we apply a simplified 
reduction technique within the adder design. 

II. ACCUMULATOR ARCHITECTURE 
Our top-level accumulator architecture is shown in Figure 1.  

As shown in the figure, the first two stages are used to 
condition the incoming value.  The base conversion step (box 
1) converts the incoming value from base 2 to an arbitrary 
base, which is set as a “generic” parameter in our VHDL.  For 
base b, this step performs the following: 

1. adds a 1-bit to the left-hand side of the 52-bit significand 
value (the implied leading binary digit to the left of the 
decimal point), 

2. shifts the significand value to the left by the value stored 
in the low order lg b bits in the exponent field (note that 
this effectively adds b - 1 bits to the width of the 
significand), 

3. strips the lower lg b bits from the exponent, and 
4. adds a sign bit and carry-out bit “00” to the left side of the 

resultant (53 + b - 1)-bit base-b significand value, 
resulting in (54 + b) total bits. 

The next stage performs an arithmetic negation of this 
value if the original sign bit was set to one (box 2). 

978-1-4244-4377-2/09/$25.00 © 2009 IEEE FPT 2009500

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 14,2010 at 14:12:40 UTC from IEEE Xplore.  Restrictions apply. 



The third stage is where the de-normalize and significand 
addition begins.  This is comprised of the following steps: 

1. compare the high-order 11-(lg b) bits of both exponents, 
exp1 and exp2 (corresponding to base-b significands sig1 
and sig2), 

2. if exp1 > exp2, shift sig2 to the right by b*(exp1-exp2) 
bits, else shift sig1 to the right by b*(exp2-exp1) bits, 

3. add the resultant sig1 and sig2, and 
4. if the addition caused the carry out bit of the sum to be set, 

add one to max(exp1,exp2) and shift the sum b bits to the 
right. 

This step involves sequential operations on both the high 
order bits of the original exponent and the base-converted 
significands.  Larger values of b will result in lower latency 
exponent operations but a wider and thus higher latency 
integer addition, while lower values of b will result in wider 
and thus higher latency exponent operations and lower latency 
integer addition. 

Table 1 shows this trade-off as the base b is increased.  The 
single-precision accumulator designs from the literature 
perform these operations in one cycle and they chose 32 as the 
base without providing any justification or analysis of why 
this value was chosen.  Since our accumulator is double 
precision, we performed a synthesis-based analysis to 
determine how the base value affects the resultant speed of the 
adder.  We describe this analysis in the next section. 

The remaining stages are used to re-condition the base-
converted sum into IEEE 754 format.  Box 6 computes the 
absolute value of the sum, box 7 counts the number of leading 
zeros, and box 8 uses this information to shift the significand 
and adjust the exponent in order to convert the significant 
back to base 2 and to re-normalize.  The last stage repackages 
the value into IEEE 754 format. 

In order to determine the base value that provides the 
highest performance, we synthesized versions of the design 
shown in Figure 1 over a range of base values.  For each base 
value, we also added delays to the outputs of the de-
normalize/add stage and enabled re-timing and pipelining in 
the synthesizer to give it the ability to distribute this step 
across multiple pipeline stages.  In other words, we added 
cycles of latency to the de-normalize/add step to improve the 
overall pipeline speed of the accumulator.  Note that in 
addition to the exponent comparison, exponent subtraction, 
and significand addition, there are also two shifters involved 
in this step (de-normalize and renormalize for a carry-out). 

In our analysis the versions of the design having a de-
normalize/add latency greater than one are not functionally 
correct without the addition of the reduction features 
described later in this paper.   However, since this analysis is 
for timing purposes only and the reduction features will 
require only minimal timing overhead, we do not include them 
in this analysis.   Our analysis included base values ranging 
from 4 to 512. 

Figure 2 shows the results of the analysis.  We used 
Synplify Pro 8.8.0.4 as the synthesizer and targeted both our 
in-house Virtex-2 Pro 100 FPGA as well as the Xilinx Virtex-
5 LX 330T for comparison.  The Virtex-2 Pro 100 design 
achieves its highest pipeline speed with a pipeline depth of 3 
and base of 128, while the Virtex-5 LX 330T design achieves 
its highest pipeline speed with a pipeline depth of 3 and a base 
of 64. 

III. REDUCTION CIRCUIT 
The reduction circuit must reconcile the data hazard created 

by the three cycle latency of de-normalize/add step, since each 
input to this step depends on the most recent output.  Note that 
any of the previously designed reduction circuits from the 
literature would fulfil this requirement.  However, these 
previous reduction circuits were designed for much longer 
pipelines (i.e. an entire floating-point adder pipeline as 
opposed to only the de-normalize/add pipeline).  In this case, 
we only need a reduction circuit to operate over a three-stage 
pipeline, which gives us the opportunity to design a reduction 
circuit that is significantly less complex than previous designs. 

The goal of our reduction circuit design is to make its 
implementation as simple as possible in order to not impose 
any additional timing overhead on the overall adder pipeline.  
In other words, the addition of the logic required for the 
reduction circuit should not shift the critical path from the de-
normalize/add stages.  In previously reported work, the 

TABLE I  
EXPONENT COMPARISON WIDTH VS. ADDER WIDTH 

Base
Exponent 
Compare 

Adder 
Width

32 6 86 
64 5 118 
128 4 182 
256 3 310 
512 2 566 

 

Fig. 1.  Top-level design of accumulator architecture.  Alpha represents the pipeline latency of de-normalize/addition datapath. 
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Fig. 3.  Configuration states for the reduction circuit. 

control and memory overheads required by the reduction 
circuit scale with the depth of the pipeline.  The goal of our 
design is to keep the memory requirements constant, needing 
only to scale the control logic for the pipeline depth.  

After a sufficient number of clock cycles have passed 
reducing a single input set, the reduction circuit operates in 
steady-state mode, where it routes the current input value and 
the output of the pipeline back into the input of the pipeline.  
In this operating state, the pipeline contains � partial sums, 
where � is the pipeline depth.  When there is a change in input 
set, the pipeline must take a series of actions to coalesce these 
partial sums while still accepting values from the next input 
set. 

As shown in Figure 3, our reduction circuit design requires 
a single input buffer and a single output buffer.  The inputs to 
the pipeline can be routed according to the following four 
different configurations: 
� Configuration A:  buffer the incoming value, route the 

buffered output value and the output currently being 
produced by the pipeline back into the pipeline.  For a 
pipeline depth of �, this must occur once for every 
internal node of a binary tree having � leaves, equalling 
��- 1 occurrences.  To ensure that the buffer depth may be 
limited to one, the value in the input buffer must be 
consumed (using configuration C) once between each 
instance of configuration A. 

� Configuration B:  add the incoming value with the value 
currently being produced by the pipeline.  This is the 
“steady-state” configuration, and is used when 
accumulating the current input set into � partial sums.   

� Configuration C:  add the buffered input value with the 
incoming input value.  This occurs during cycles when 
the output of the pipeline need not re-enter the pipeline.  
This includes the cycles where the pipeline output is 

buffered (which must occur once before the architecture 
enters configuration A) and the cycles where an input set 
is reduced to a final sum (which occurs once per input 
set). 

� Configuration D:  add the incoming value with zero.  
This only occurs one time per input set, prior to the first 
time an input is buffered.  

As shown in Table 2 for a pipeline depth of � = 3, starting 
with the first cycle where the incoming value belongs to a new 
input set, the controller will instruct the reduction circuit to 
cycle through a deterministic series of configuration changes 
for the following eight cycles that will reduce the previous 
input set to a single sum while continuing to accept values 
from the new input set.  In the table, �1, �2, and �3 represent 
the partial sums from the previous input set. 

The controller is implemented as a single 9-state FSM, 
where all state transitions are unconditional except for the 
input state where the next input set (incoming from stage 2 of 
the accumulator pipeline) differs from the current input set.  
This is detected by comparing the input set from stage 3 and 
stage 2 in the top-level accumulator pipeline. 

Routing is performed with a 2-input mux before the first 
input and a 3-input mux before the second input to the de-
normalize/add pipeline.  Note that each input value consists of 
a (54 + b)-bit significand and a (11-lg b)-bit upper exponent 
value.  The controller also raises the data_valid flag to 
indicate the output sum is valid for each input set. 

For this reduction technique, there is a minimum set size 
that must be enforced in order to allow for the coalesce 
process for the previous input set to finish before the current 
set ends.  For a pipeline depth of �, the minimum set size is 
� � 11lg ���� cycles, since after each �-cycle pass, there 

are half the number of partial sums in the pipeline. 
IV. ACCUMULATOR CHARACTERISTICS 

The total latency of the accumulator is 7 cycles for the base 
conversion and IEEE 754 overheads plus 8 cycles for the 
reduction, totalling 15 cycles.  The synthesis-based timing 
analysis described in Section III did not include routing delays.  
To determine the actual performance of the accumulator, we 
placed and routed the fully-designed base-32, base-64, base-
128, and base-256 accumulators, including the reduction 
circuit, and placed each inside a system-specific wrapper that 

 
Fig. 2.  Synthesis results for Virtex 2 Pro 100 (top) and Virtex-5 LX 
330T (bottom), as operating frequency versus base value. 
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TABLE II 
 EXAMPLE OF THE REDUCTION CIRCUIT OPERATING OVER A PIPELINE OF DEPTH 3.  

Clock 
cycle 

Accum. 
input 

Input 
buffer Adder pipeline Output 

buffer Notes 

0       Configuration B 
(Steady-state) 

1 B1  �3 �2 �1  
Configuration D 
Set A complete, adder pipeline 
full 

2 B2  B1+0 �3 �2 �1 Configuration A 
3 B3 B2 �1+��2 B1+0 �3  Configuration C 
4 B4  B2+B3 �1+��2 B1+0 �3 Configuration B 
5 B5  B1+B4 B2+B3 �1+��2 �3 Configuration A 
6 B6 B5 �1+��2+��3 B1+B4 B2+B3  Configuration B 
7 B7 B5 B2+B3+B6 �1+��2+��3 B1+B4  Configuration B 

8 B8 B5 B1+B4+B7 B2+B3+B6 �1+��2+��3  

Configuration C 
Set A accumulation complete, 
use this cycle to clear input 
buffer 

9 B9/C1  B5+B8 B1+B4+B7 B2+B3+B6  
Configuration B/D 
Earliest valid cycle for input set 
C to begin 

TABLE III 
  ACCUMULATOR RESOURCE AND PERFORMANCE RESULTS 

Base Slices 
Maximum Actual 
Operating Freq. 

32 1884 160 MHz 
64 2045 170 MHz 

128 2986 130 MHz 
256 5336 125 MHz 

allows each accumulator to be instanced on the FPGA and the 
host to send it inputs and sample its outputs, through FIFOs 
that are accessible by programmed I/O calls from the host.  
Using this technique, we incrementally increased the 
accumulator pipeline speed, and after each increase we 
compare the results from the accumulator with results 
computed on the host.  Using this technique we can determine 
the maximum speed for each base value on our Virtex-2 Pro 
100 FPGA on our Annapolis Micro Systems WildStar-II Pro 
card. 

The performance and resource usage results are shown in 
Table 3.  The resource usage was measured by placing and 
routing the accumulator only, while the performance results 
were measured with additional host-FPGA interface logic.  
The performance of each circuit is higher than the synthesis 
results indicated.  Contrary to the results shown during our 
synthesis analysis, the base-64 version of the accumulator 
achieves the highest speed.  We assume this is due to 
inaccuracies in the synthesizer estimate.  The resource usage 
results show that these circuits, except for the base-256 
version, use significantly less resources than the accumulators 
from the literature. 

V. CONCLUSION 
In this paper we describe a new design technique for high 

performance, low resource double precision accumulators.  
Our approach combines elements from two previous 

techniques.  The first is the use of base-converted adders to 
expose a reduced-latency addition operation, as opposed to 
basing the accumulator feedback around a full floating-point 
adder architecture.  The second technique is to use a 
simplified version of the reduction architecture described in 
several recent publications. 

We tested our accumulator on a Virtex-2 Pro 100 FPGA on 
our Annapolis computing card.  Through these tests, we have 
achieved an observed maximum speed of 170 MHz and a 
minimum resource usage of 1884 slices. 
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