
Accuracy, Cost, and Performance Tradeoffs for
Floating-Point Accumulation

Krishna K. Nagar
Department of Computer Science and Engineering

University of South Carolina
Columbia, SC 29208, USA
Email: nagar@email.sc.edu

Jason D. Bakos
Department of Computer Science and Engineering

University of South Carolina
Columbia, SC 29208, USA
Email: jbakos@cse.sc.edu

Abstract—Set-wise floating point accumulation is a funda-
mental operation in scientific computing, but it presents design
challenges such as data hazard between the output and input of
the deeply pipelined floating point adder and numerical accuracy
of results. Streaming reduction architectures on FPGAs generally
do not consider the floating point error, which can become a
significant factor due to the dynamic nature of reduction archi-
tectures and the inherent roundoff error and non-associativity of
floating-point addition. In this paper we two frameworks using
our existing reduction circuit architecture based on compensated
summation for improving accuracy of results. We find that both
these implementations provide almost 50% exact results for most
of the datasets and relative error is less than that for the reduction
circuit. These designs require more than twice the resources
and operate at less frequency when compared to the original
reduction circuit.

Index Terms—Computer arithmetic; Floating point accumu-
lation; Rounding errors; Numerical accuracy; Compensated
summation; FPGA.

I. INTRODUCTION

Floating point summation operation– or accumulation–,
S =

∑n

i=1
ai is the core of linear algebra operations which

comprise the kernel of scientific applications such as fast
multipole methods, computational fluid dynamics, networks
etc.

In many applications, it is required to accumulate sets of
different sizes which also require high numerical accuracy.
Achieving high performance for the accumulation operation
thus presents two challenges. Firstly, on a parallel computer,
the summation can be performed using a parallel “reduction”
operation. In this operation, multiple additions are performed
concurrently, producing multiple “partial” sums that are main-
tained separately until they are eventually added into a final
result. However, the non-associativity of floating point addition
causes the rounding error to be dependent on the run-time
behavior.

The second challenge arises from the fact that floating point
adders are deeply piplelined. If a new input is delivered to
the adder every clock cycle, it cannot provide the current
sum before the next value arrives, creating a data hazard. In
such a case, the designer cannot use a simple feedback-based

accumulator as it may result in addition of values belonging to
different sets. In order to accumulate multiple sets of different
sizes and deal with data hazard, a special circuit with proper
scheduling techniques around floating point adders is required.
This requirement leads to control overhead which may require
additional resources and may reduce the hardware utilization.

Implementing parallel reduction operations on FPGAs
presents some unique opportunities to maintain and improve
the accuracy and resolve the issue of data hazard. A rich set
of tradeoffs can be made between error bound and resource
usage through the design of customized floating point units.
Also, very fine-grained control logic can be used to reduce the
overheads of data dependent behavior.

Several methods have been developed and studied in or-
der to improve the accuracy of summation. Some of these
techniques have also been implemented on FPGA based
coprocessors[16], [17], [18], [19]. Also, there have been
several efforts to implement streaming set-wise reduction on
FPGAs[11], [12], [13], [14], [15].

The motivation of this research arises from the observation
that previous works address the problem of improving accu-
racy and streaming set-wise reduction of floating point values
separately. In this paper, we present a high performance gen-
eral purpose reduction circuit which solves with the problem
of floating point accumulation. This reduction circuit achieves
nearly 100% utilization regardless of the structure of the input
data. We also examine methods to leverage custom hardware
in order to place tighter error bounds on the accumulation
operation. We incorporate these methods in our reduction
circuit.

II. (IN)ACCURATE FLOATING POINT ADDITION

Methods, in which large floating point datasets are used,
may deliver inaccurate results due to different sources of
errors. Stability of numerical algorithms is an important topic
of research in the field of numerical analysis and much of
the focus has been given to the accuracy of floating point
operations [1], [2].

Rounding errors are unavoidable due to prevalence of finite
precision floating point arithmetic[3]. Rounding errors can be
introduced in two ways- shift and carry. The error due to shift978-1-4799-2079-2/13/$31.00 c© 2013 IEEE

operation of smaller operand during addition causes shifting
error. A nonzero carry which results the significand width to
be more than the allowed bits causes carrying error.

Error during a floating point addition can be calculated using
additional floating point operations using algorithm 1 which
is known as Fast2Sum[6]. The error can be incorporated into
intermediate and the final results[10]. Such methods are known
as compensated summations.

Kahan’s compensated summation algorithm which calcu-
lates and applies the correction in each iteration for recursive
summation[4]. In this algorithm, the error term e - the approxi-
mation to the rounding error, is subtracted from the next input
value in subsequent iteration. Another step can be added to
this algorithm in which S + e can be calculated at the end of
the loop [5]. It has been shown that this algorithm improves
the error bound and gives almost ideal result. Equation 1 gives
the relative error bound for Kahan’s compensation algorithm
which is independent of n if nε < 1.

|En|
|Sn|

6 (2ε+O(nε2))

∑n
i=1 |ai|

|
∑n

i=1 ai|
(1)

The condition number in the above equation is

κ =

∑n
i=1 |ai|

|
∑n

i=1 ai|
(2)

|En| is the difference between the exact summation calcu-
lated with infinite precision, |Sn| and the recursive summation
in floating point precision, Sn. This error bound considers the
error introduced at each iteration step of the recursive addition
of terms a; and it is dependent on the number of terms, n, but
independent of the order in which they are added. Here, ε
represents the machine precision.

Algorithm 1 Fast2Sum Algorithm

1: Input(a, b)
2: if |a|<|b| then
3: swap(a, b)
4: end if
5: x = a+ b
6: bt = x− a
7: e = b− bt
8: Return(x, e)

Another version of compensated summation has been de-
veloped where the error terms calculated after each addition,
using Fast2Sum algorithm, are accumulated and the correction
is applied at the end of the summation. Equation 3 shows the
relative error bound for this method.

|En|
|Sn|

6 (2ε+O(n2ε2))

∑n
i=1 |ai|

|
∑n

i=1 ai|
(3)

It must be noted that Fast2Sum algorithm requires |a| > |b|.
This essentially creates a branch in software implementations
of these algorithms but when implementing these in hardware,
the swap operation in floating point adder eliminates the need

Fig. 1: Reduction Circuit Rules

of this check and thus accurate summation can be calculated
with three additional steps. Also, these methods may have
large relative error when the condition number is high but
overall the results are more accurate then recursive summation.

Several other variations compensated summation techniques
have been developed but require significantly more number of
floating point operations[7], [8], [9].

It can be observed that in compensated summation methods,
additional steps are required to recover the error encountered
during the alignment operation. But these do not require a-
priori knowledge of the data hence they are more suitable and
less expensive for hardware implementation.

III. DATASET REDUCTION

In this section we present an approach to overcome the
issue of data hazard in set-wise accumulation of floating point
values. This design was originally published in [21].

The reduction circuit has been designed by adding control
logic- comparators, counters, and buffers- around a standard
deeply pipelined double precision adder in order to form a
dynamically scheduled accumulator.

The reduction circuit consists of a set of data paths that
allow input values and the adder output to be delivered into the
adder or buffered based on their corresponding accumulation
set ID and the state of the system. Data paths are established
by the control unit according to six rules as shown in Figure 1

This architectures consists of 4 buffers which store the
incoming values and the partial sums. The input values are
supplied to the reduction circuit through a FIFO. In case, all
the buffers are occupied and rules 1 to 5 cannot be applied,
input value is not read from the FIFO and rule 6 is applied.

IV. ERROR COMPENSATION IN HARDWARE

In this section, we present a set-wise floating point accumu-
lation framework for FPGAs which not only reduces multiple
streaming sets efficiently but also improves the accuracy of
the results. The objective of this is to evaluate various design
trade-offs such as resource usage and working frequency for
different methods. Our goal is to achieve high throughput
while maintaining high accuracy and keeping the resource
requirement low. The reduction circuit architecture described

Fig. 2: Accumulated Error Compensation

previously serves as the foundation for the error correction
frameworks.

We have designed a custom double precision adder based
FloPoCo[20] adder design which outputs the error encountered
during addition along with the sum. This adder not only takes
into consideration the shifted out bits but also the error due to
rounding. The custom adder essentially reduces one floating
point operation from the algorithms and hence reduces the
overall latency of the algorithms. As listed in Table I, the
resources required for the custom adder are almost twice and
the operating frequency suffers 29% performance penalty.

In the following sections, we discuss two designs based on
compensated summation to improve the accuracy.

A. Accumulated Error Compensation

Using the custom adder, we have implemented compensated
summation algorithm where the error generated from the
custom floating point adder is accumulated. We call this
design accumulatederror compensation(AEC). In this design,
two reduction circuits are required- first reduction circuit sums
up the dataset values and output the errors. We call this value
reduction circuit (VRC). The second reduction circuit, called
Error Reduction Circuit (ERC), accumulates the errors being
generated from VRC. Once the set is completely reduced in
VRC, the accumulated error is added to the final sum using
another floating point adder. The difference between ERC
and VRC is that the values belonging to a particular set are
delivered contiguously to VRC but ERC may receive the error
values non-contiguously. This can potentially lead to a false
reduction in ERC. To prevent this situation, ERC checks for
the valid out signal from VRC to check if the set has been
reduced in VRC. Figure 2 shows an overview of AEC.

TABLE I: Comparison of Designs

Design Slice Register Change Frequency %Change
FP Adder 1130 330 MHz

Custom Adder 2310 2.04X 235 MhZ -28.7%
Reduction Circuit 1873 188 MHz

AEC 4743 2.53X 176 MHz -6.3%
AECSA 7938 4.23X 135 MHz -29.2%

B. Adaptive Error Compensation in Subsequent Addition

In another compensated summation approach, have imple-
mented a method where the error can be added to value in

subsequent addition if available. We refer to this approach as
adaptive error compensation in subsequent addition (AECSA).
In this design, two reduction circuits are required. In the first
reduction circuit, VRC, the two adders are required. Before the
first adder, we need to compare the input values and supply
the value with greater exponent to the first adder. The first
adder calculates the difference between the input and the error
previously generated. Custom adder connected sequentially
to the output of the first adder calculates the sum of inputs
and the associated error. Another adder is required to add the
final result and the last error value. Since we allow multiple
accumulations from the same set simultaneously, there may
arrive a case where we may not be able to add the error. In
such a case we accumulate such errors using ERC. Partially
accumulated errors can also be supplied from ERC to VRC.
If the error term comes from ERC, it is invalidated in ERC
and is not considered for accumulation. The rule to be applied
in ERC depends on whether the corresponding error term has
been invalidated or not. Thus, supply of error term gets priority
over accumulation in ERC. This approach has been depicted
in Figure 3.

As listed in Table I, AEC requires 2.5 times more resources
and operates at 6.3% less frequency as compared to the
original reduction circuit while AECSA requires 4.2 times
more resources and operates at 29.2% less frequency on
Xilinx Virtex 5 LX330 FPGA. We attribute the increase in
the resource usage and reduction in frequency to the custom
adder, ERC and the additional control logic to implement ERC.
Also, in AECSA, it is due to the supply of error from ERC.

V. ACCURACY OF DESIGNS

In order to test the circuits for accuracy, we generated
random datasets with some constraints and divided those
datasets into sets of size 100. We simulated the designs and
compared the results against the results from original reduc-
tion circuit without error compensation. In order to calculate
the relative error, we used the GNU MPFR[22] library for
recursive summation with the precision set to 2048. This is
treated as sum with infinite precision, |Sn|. We report the
dataset attributes, percentage of exact results and the relative
error in Table II. The shift amount during addition depends on
the difference between exponents hence we generated datasets
with different range of exponents. Also, the relative error
is large if the condition number, κ, is greater than 1 i.e.
the datasets contain both positive and negative number and∑n

i=1 |ai|>|
∑n

i=1 ai|. For κ = ∞, we report absolute error
|Sn| − Sn.

It is evident that the relative errors from AEC and AECSA
are comparable in all the cases while the relative error is
high without error compensation. The relative error becomes
more prominent if the condition number of dataset is high,
yet it is significantly less for AEC and AECSA than that for
the design without error compensation. Also, these designs
provide almost 50% exact results (|Sn| − Sn = 0.00) in
most cases. Thus, our designs with error compensation achieve
better accuracy in set-wise summation.

Fig. 3: Adaptive Error Compensation in Subsequent Addition

TABLE II: Relative Errors for Designs

Property Reduction Circuit AEC AECSA
Dataset Range Exponent κ Exact Rel. Error Exact Rel. Error Exact Rel. Error

0 to 1 exp = 1 1.0 0.00% 3.14E-16 50.32% 1.68E-16 49.42% 1.74E-16
2 to 4 exp = 1 1.0 0.00% 3.87E-16 48.90% 2.01E-16 49.03% 2.02E-16

2 to 32 1 6 exp < 5 1.0 0.00% 2.89E-16 51.87% 1.59E-16 49.94% 3.00E-16
2 to 2048 1 6 exp < 11 1.0 0.00% 3.46E-16 51.10% 1.73E-16 51.35% 2.93E-16
2 to 250 1 6 exp < 50 1.0 0.00% 3.99E-16 54.45% 2.21E-16 51.74% 4.01E-16

-1 to 1 exp < 1 > 1.0 0.00% 1.34E-13 41.16% 1.85E-14 31.35% 2.80E-14
-16 to 16 1 6 exp < 4 ∞ 0.00% 2.84E-14 58.58% 2.66E-15 32.97% 1.69E-14

VI. CONCLUSION

In this document, we have presented two designs for accu-
rate set-wise floating point summation based on our reduction
circuit and compensated summation algorithms. On the basis
of our results, we can conclude that using compensated sum-
mation in hardware provides more accurate results but requires
significantly more resources and operate at less frequency due
to additional control logic.

REFERENCES

[1] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2nd edition, 2002.

[2] Ivo Babuska. Numerical stability in mathematical analysis. In IFIP
Congress (1), pages 11–23, 1968.

[3] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surv., 23(1):5–48, March 1991.

[4] W. Kahan. Pracniques: further remarks on reducing truncation errors.
Commun. ACM, 8(1):40–, January 1965.

[5] W. Kahan. A Survey of Error Analysis. Defense Technical Information
Center, 1971.

[6] T.J. Dekker. A floating-point technique for extending the available
precision. Numerische Mathematik, 18:224–242, 1971/72.

[7] Siegfried M. Rump, Takeshi Ogita, and Shinichi Oishi. Accurate floating-
point summation. Technical report, University of California, Berkeley,
2005.

[8] Peter Kornerup, Vincent Lefevre, Nicolas Louvet, and Jean-Michel
Muller. On the computation of correctly rounded sums. IEEE Trans-
actions on Computers, 61(3):289–298, 2012.

[9] Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic
and fast robust geometric predicates. Discrete and Computational
Geometry, 18:305–363, 1996.

[10] James Gregory. A comparison of floating point summation methods.
Commun. ACM, 15(9):838–, September 1972.

[11] Ling Zhuo, Gerald R. Morris, and Viktor K. Prasanna. High-performance
reduction circuits using deeply pipelined operators on fpgas. IEEE Trans.
Parallel Distrib. Syst., 18(10):1377–1392, 2007.

[12] Miaoqing Huang and David Andrews. Modular design of fully pipelined
reduction circuits on fpgas. IEEE Transactions on Parallel and Dis-
tributed Systems, 99(PrePrints):1, 2012.

[13] Krishna K. Nagar and Jason D. Bakos. A High-Performance Double
Precision Accumulator. In Proceedings of the 2009 International Con-
ference on Field-Programmable Technology (FPT’09), pages 255–262,
2009, Sydney, NSW, Australia.

[14] M. E. T. Gerards, J. Kuper, A. B. J. Kokkeler, and E. Molenkamp.
Streaming reduction circuit. In Proceedings of the 12th EUROMICRO
Conference on Digital System Design, Architectures, Methods and Tools,
Patras, Greece, pages 287–292, Los Alamitos, August 2009. IEEE
Computer Society.

[15] Michael deLorimier and André DeHon. Floating-point sparse matrix-
vector multiply for fpgas. In Proceedings of the 2005 ACM/SIGDA 13th
international symposium on Field-programmable gate arrays, FPGA ’05,
pages 75–85, New York, NY, USA, 2005. ACM.

[16] Nachiket Kapre. Optimistic parallelization of floating-point accumula-
tion. In 18th Symposium on Computer Arithmetic, pages 205–213. IEEE,
2007.

[17] Chuan He, Guan Qin, Mi Lu, and Wei Zhao. Group-alignment based
accurate floating-point summation on fpgas. In ERSA’06, pages 136–142,
2006.

[18] Manouk V. Manoukian and George A. Constantinides. Accurate floating
point arithmetic through hardware error-free transformations. In Proceed-
ings of the 7th international conference on Reconfigurable computing:
architectures, tools and applications, ARC’11, pages 94–101, Berlin,
Heidelberg, 2011. Springer-Verlag.

[19] Edin Kadric, Paul Gurniak, and Andre DeHon. Accurate parallel
floating-point accumulation. In Proceedings of the 2013 IEEE 21st
Symposium on Computer Arithmetic, ARITH ’13, Washington, DC, USA,
2013. IEEE Computer Society.

[20] Florent de Dinechin and Bogdan Pasca. Designing custom arithmetic
data paths with FloPoCo. In IEEE Design and Test of Computers,
28(4):18–27, 2011

[21] Krishna K. Nagar and Jason D. Bakos A Sparse Matrix Personality
for the Convey HC-1. In Proceedings of the 19th Annual IEEE
International Symposium on Field Programmable Custom Computing
Machines(FCCM’11), Salt Lake City, UT, USA. May 2011.

[22] The GNU MPFR Library. http://www.mpfr.org, Aug 2013.

