
978-1-5386-3797-5/17/$31.00 ©2017 IEEE 

A Dynamically Reconfigurable 

Automata Processor Overlay 
 

Rasha Karakchi 
Dept. of Computer Science and Engineering 

Univ. of South Carolina 
Columbia, SC USA 

karakchi@email.sc.edu 

Lothrop O. Richards III 
Dept. of Computer Science and Engineering 

Univ. of South Carolina 
Columbia, SC USA 

lothropr@email.sc.edu 

Jason D. Bakos 
Dept. of Computer Science and Engineering 

Univ. of South Carolina 
Columbia, SC USA 
jbakos@cse.sc.edu

Abstract—This paper describes a design for a parameterizable 
automata processor overlay and a placement algorithm required 
for its support software.  The resulting framework serves as both 
an open-source alternative to Micron’s Automata Processor (AP) 
and as an experimental testbed for exploration of architectural 
tradeoffs.   An automata processor is a processor-in-memory 
architecture designed to recognize patterns in streaming data.  
Our framework takes a description of a nondeterministic finite 
automata (NFA) described in Micron’s ANML language and uses 
instantiated JTAG sources to configure the on-chip RAM and 
programmable interconnect of the overlay programmed onto an 
FPGA.  Like the Micron AP, our design is comprised of an array 
of interconnected state transition elements (STEs).  While our STE 
design is equivalent to that of the Micron AP, our overlay uses a 
simpler, non-switched interconnect based on pairwise gated 
connections.  This interconnect design creates a constraint 
satisfaction problem when mapping logical states to the physical 
STEs.  In this paper, we explore the impact of tradeoffs in the 
interconnect architecture as it relates to a Stratix 5 GX target 
device and we describe and evaluate an algorithm for STE 
placement with respect to the ANMLZoo benchmark suite.  As far 
as the authors know, this is the first example of an FPGA-based 
automata processor overlay. 
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memory, reconfigurable computing, pattern matching, ANML, 
FPGA, heterogeneous computing, accelerator, high-performance 
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I. INTRODUCTION 

Many tasks in big data analytics are built upon pattern 
matching and classification operations.  Examples include 
approximate string matching, calculating the distance between 
two genomic sequences, signature-based threat detection, 
feature extraction, and association rule mining.  Such pattern 
matching tasks are reducible to instances of deterministic finite 
automata (DFA) or nondeterministic finite automata (NFA).  
When evaluated on a CPU, the computational throughput of 
DFA and NFA are generally limited by cache performance, 
which (for large pattern sets) is itself limited by the inherently 
unpredictable memory access pattern of state transition tables.  
Achieving transformative performance improvements for these 
types of tasks require specialized processors having customized 
memory structures, such as the Micron Automata Processor 
(AP) [1]. 

The Micron AP is a programmable, spatial architecture for 
implementing arbitrary NFAs.  The current generation Micron 
AP stores state activation in a 48 kilobit register and stores the 
state transition table in two separate memory structures:  an array 
of 48K 256x1 asynchronous RAMs that store the input symbols 
and a programmable interconnect that stores the logical topology 
of the NFA’s transitions.  During operation, the interconnect 
serves as a function that maps the output of the RAMs to the 
input of the state registers. 

The AP’s basic unit of configuration is the state transition 
element (STE), which contains a 256x1 RAM and one state 
register.  Like an FPGA, the AP’s programmable interconnect is 
hierarchical, in which localized groups of STEs are more 
density-connected than more distant STEs.  Since the 
interconnect requires a significant amount of real estate, there is 
fundamental tradeoff between the number of STEs and the 
interconnect density.  For the Micron AP, this tradeoff is fixed, 
while an FPGA-based automata processor can offer a repertoire 
of design space alternatives while still offering the ability to re-
use any one design for multiple NFA descriptions. 

In this paper, we describe and evaluate a reusable FPGA-
based overlay architecture that exhibits most of the functionality 
of the Micron AP and can rapidly adapt its behavior to match 
that of an arbitrary NFA description without requiring a full 
FPGA synthesis or reconfiguration.  Unlike previous work that 
requires the FPGA design be re-synthesized for each NFA, our 
design is an abstraction that is synthesized once but is 
reconfigurable in-place on the FPGA.  We target an Intel Stratix 
5 GX A7 FPGA, which contains 7 Mb of asynchronous (LUT-
based) RAM and 938,880 registers.  This would potentially 
allow for the design of an AP array of up to 28,672 STEs or 
approximately one-half the capacity of a Micron AP.  In this 
paper, we demonstrate experimental results for deployed designs 
of up to 24,576 STEs, roughly 86% of the theoretical capacity 
bound. 

II. BACKGROUND 

Deterministic Finite Automata (DFA) are commonly used to 
implement regular expressions and to design sequential digital 
logic.  DFA are comprised of a set of states connected by 
labeled-edges.  During operation, a DFA may have one active 
state at any time and accesses only one entry of its state transition 
table and thus must contain a state for every possible partial 



match of every possible pattern.  This can lead to combinatorial 
growth of the state space and next-state table. 

Nondeterministic Finite Automata (NFA) differ from DFA 
in that multiple states may be simultaneously active, allowing 
for the tracking of multiple partial matches in parallel.  As a 
result, an NFA generally requires a substantially smaller state 
transition table as compared to an equivalent DFA. 

Fig. 1 a and b show an example DFA and NFA that recognize 
a simple pattern “ababc” along with their corresponding state 
transition tables.  The next state table for the NFA is 2.6 X 
smaller than that of the DFA.  Fig. 1c shows the activation 
sequence for the input pattern “abababc”. 

The AP’s architecture inherently requires an alternative form 
of the NFA as shown in Fig 1d, where the transition labels are 
associated with the states as opposed to the edges.  In this form, 
all transitions into each state (from all immediate predecessor 
states) must activate on the same set of input symbols.  Using 
this form allows the STEs to store the symbols associated with 
the incoming transitions to each state. 

The State Transition Element (STE) is the Automata 
Processor’s basic element of reconfiguration.  Each STE 
contains an activation flip-flop that holds the STE’s active state 
equivalent to that of one-hot encoding.  Each STE is 
interconnected with other STEs by accepting activation inputs 
from predecessor STEs and outputting activation signals to 
successor STEs.  The STE’s activation inputs are fanned into an 
OR-gate.  Each STE also contains a 256-to-1 asynchronous 
RAM that stores a 1-bit corresponding to each of the input 
symbols associated with the state.  The address input to this table 
is connected to the global, top-level input symbol.  The OR-gate 
and the RAM work together to activate the state; internal logic 
sets the STE’s activation flip-flop when at least one of the STE’s 
activation inputs are asserted and there is a one-bit stored in the 
currently-indexed location in the RAM.  Any other condition 
resets the flip-flop to zero. 

The AP’s routing matrix is built using tri-state switches that 
can form arbitrary connections between different pairs of STEs 
using a pool of shared physical wires.  The switches and wires 
are arranged hierarchically, where the interconnectivity between 
STEs is highest at lower levels of the hierarchy.  Starting from 

the bottom of the hierarchy, there are two STEs to a Group of 
Two (GoT), eight GoTs to a row (16 STEs), sixteen rows to a 
block (256 STEs), 96 blocks to a half-chip (24K STEs), and two 
half-chips to an AP (48K STEs).  As is the case for FPGAs, the 
design of the routing matrix places physical constraints on the 
logical topology of the implemented NFA. 

III. PREVIOUS WORK 

This section summarizes prior work in four related areas: (1) 
methods for synthesizing automata-type architectures onto an 
FPGA fabric, (2) applications that benefit from such 
architectures, (3) open source automata models and 
architectures, and (4) tools and methods for optimizing automata 
descriptions. 

A. Synthesis NFAs and Regular Expressions 

FPGA implementation of regular expression matchers are 
often inspired by networking applications [2] and many of these 
are based on automata-based architectures.  For these 
approaches a significant challenge is the high cost of logic 
synthesis and place-and-route for each set of regular expressions 
to be implemented. 

Yang and Prasanna developed early methods for 
synthesizing regular expressions into logic mapped onto two 
specific FPGA devices, a Xilinx Virtex XCV100 (20x30 array 
of configurable logic blocks) and a conceptual Self-
Reconfigurable Gate Array (SRGA) device [3].  Their original 
approach bypassed the synthesis flow and directly targeted the 
low-level FPGA fabric.  However, as FPGA technology matured 
this approach became infeasible, and their second design 
targeted HDL but introduced additional optimization methods 
for both the NFA descriptions and generated architecture [4,5]. 

Becchi et al developed a set of techniques for optimizing 
both NFA and DFA-based architectures [ 6 , 7 , 8 ], including 
several approaches to identify and explore design parameters 
that have the most significant impact on the performance and 
cost of the corresponding NFA and DFA implementation.  
Examples of these include alphabet size, number of inputs read 
per cycle (stride), and storage of next state tables in logic and/or 
RAM. 

This material is based upon work supported by the National Science 
Foundation under Grant No. 1421059. 

 
Fig. 1.  DFA vs. NFA and conversion of NFA with edge labels to state labels. 



B. Mapping Applications to AP Execution Model 

Automata-based architectures are most commonly 
associated with regular expression evaluation, but the 
introduction of the Automata Processor has generated interest in 
identifying other applications that map to NFA-type 
architectures, or so-called “pattern recognition processors.”   
Examples include association rule mining [ 9 ], brill tagging 
[10,11], and Levenshtein and Hamming distance calculation 
[12].  More specific examples include Protomata and Motomata 
[13], which search for motifs--or common approximate DNA 
subsequences among a group of genomes--in which each motif 
is identified by NFA-based pattern loaded onto the AP during 
runtime.  For these, the performance of the AP depends on its 
ability to quickly synthesize and load patterns onto the AP.  
There are also efforts to develop general-purpose programming 
languages for NFA-type architectures, such as RAPID, a 
proposed high-level programming language for pattern 
recognition processors [14]. 

C. Open Source Automata Processor Architectures, 
Simulators, and Benchmarks 

Wadden et al. developed a place and route tool built on VPR 
[15] that targets a conceptual design for a theoretical Automata 
Processor fabric [16 ].  This tool serves as an experimental 
framework with which to explore the impact of routing 
algorithms and interconnect design on performance and 
efficiency.  Using this tool they compared the hierarchical 
design of the AP routing matrix to a non-hierarchical mesh-
based network-on-chip and concluded that the ideal interconnect 
architecture depends on the input NFA topology. 

The same group compiled a suite of NFA benchmarks called 
ANMLZoo containing a representative example of an NFA 
description, sample input, and expected outputs for every 
publicly-released application for the AP as well as two synthetic 
benchmarks [17].  They also developed open source tool that can 
simulate the evaluation of arbitrary ANML descriptions and 
perform basic transformations to NFA such as elimination of 
counters and Boolean elements and use of state replication to 
limit the maximum in-degree (fan in) and out-degree (fan out) 
of the NFA [18]. 

Fang et al. designed the Unified Automata Processor (UAP), 
a set of vector extensions added to a traditional von Neuman 
CPU optimized for implementing a variety of NFA-based 
programming models [19].  The UAP exploits parallelism by 
concurrently traversing one edge per cycle for each of its 64 
lanes.  The design stores NFA transitions in local memory 
attached to each lane, equally 1 MB in total.  The transitions are 
stored in a compact, efficient format but the design is limited to 
NFAs that can fit into the local memory. 

D. Optimization Methods for NFA Descriptions 

Recent work has contributed new methods for transforming 
NFA descriptions into alterative but functionally-equivalent 
forms, such as eliminating redundant sub-substructures within 
the NFA logical topology [18]. 

Becchi et al developed an algorithm for partitioning NFA 
descriptions into roughly equal-sized sub-automata while 
minimizing the number of state replications and balancing the 

sizes of the resulting sub-automata [ 20 ].   This technique 
facilitates the usage of NFA descriptions on architectures that 
are limited by on chip memory capacity to NFAs having less 
transitions or states. 

E. Comparative Studies of NFA Implementations on CPUs, 
GPUs, and FPGAs  

Once configured with an NFA description, the Micron 
Automata Processor, the Unified Automata Processor, and all 
FPGA-based automata processors generally achieve high 
traversal throughput of one or two input symbols per clock cycle.  
Processing NFAs that are too large to fit on a particular device 
requires multiple passes of the input stream.  Preprocessing time, 
which potentially includes synthesis and place-and-route, is 
often an important performance consideration.  CPU- and GPU-
based approaches are able to process NFAs stored in DRAM and 
are generally less affected by preprocessing time, but their 
traversal time--especially for larger NFAs--is limited by their 
cache performance.  Since the behavior of automata processors 
is dependent on both the NFA structure and input stream, 
performance comparisons between competing architectures is 
difficult. 

Becchi et al. characterized the performance of GPU, AP, and 
FPGA-based automata processing approaches, finding that 
FPGAs offer a traversal throughput of 2 to 3 times that of the AP 
and 80 to 1000X that of a GPU at the cost of extremely high 
preprocessing time.  In this analysis, the preprocessing time 
including a pass through the FPGA synthesis and place-and-
route design flow [20]. 

IV. OVERLAY ARCHITECTURE 

Our AP overlay architecture is reusable (without re-synthesis 
and place-and-route) across different NFA descriptions having 
arbitrary state labels and arbitrary logical NFA topologies, 
provided that the logical topology does not violate resource 
constraints inherent in the overlay’s structure.  The most 
important constraint is a parameter of the interconnect that we 
refer to as “hardware fan-out”, which determines the 
maximum number of outgoing transitions per STE as well as the 
maximum distance between a pair of connected STEs with 
respect to their location in the array.  For example, with a 
hardware fan-out of 10, STE n can only connect to STEs n-4 to 
n+5 (including to itself). 

We developed several Pareto optimal versions of the overlay 
with varying numbers of STEs and hardware fan-out.  The 
overlay architecture and software infrastructure is compatible 
with Micron’s ANML NFA format, except that it currently lacks 
support for Boolean and counting elements, features we plan to 
incorporate into the next version of the design. 

Our AP architecture design differs from the Micron AP in 
two important ways.  First, it has a non-switched interconnect 
based on gate-able point-to-point connections between STEs.  
Second, the STEs contain programmable flags that can specify 
any STE as being a start state or a reporting state. 



A. STE Design 

Without considering the resource usage of the interconnect, 
the number of STEs is limited by the on-chip RAM available to 
store the input symbols associated with each STE.  We refer to 
this table as the current state table to remain consistent with 
Micron’s terminology. 

Our evaluation FPGA is an Intel Stratix 5 GX A7.  This 
device has roughly 7X the on-chip memory capacity in M20K 
resources than it does in its MLAB (LUT-based) resources, but 
there are several practical problems with using M20K resources 
for the current-state tables. 

First, the M20K blocks are available in only 20 out of the 
209 columns on the FPGA while the MLAB blocks are more 
uniformly distributed.  Using MLABs avoids congestion around 
the M20K columns.  Second, the current state tables have a depth 
of 256, while the minimum depth required to fully utilize M20K 
resources is 512, meaning that only 50% of the M20K capacity 
is available for depth-256 tables.  Third, the M20K requires 
synchronous reads, which if used for the current state table 
would potentially reduce the throughput by 1/2, as each input 
symbol would require one cycle to access the current state table 
and another for updating the state flip-flop.  Finally, the M20K 
blocks are needed for other purposes, such as to buffer the input 
and output data for the AP fabric.  The Stratix 5 GX 7A contains 
7.16 Mb of MLAB memory, giving an upper bound of roughly 
29K STEs, as compared to 48K STEs on the Micron AP. 

Fig. 2 shows the design of our STE.  In order to achieve 
maximum utilization of the MLAB memory, the current state 
tables are generated as 256-deep x M bit RAMs, where M = the 
number of STEs in each placement-constrained region 
(described later).  Each STE accepts a one-bit input from its 
corresponding column in the current state table, indexed by the 

input symbol.  The current state MLABs are initialized through 
JTAG. 

Each STE contains an OR-gate accepting activation signals 
from its connected predecessor STEs.  Any cycle in which any 
of the incoming activation signals are asserted while receiving a 
one-bit from the current state table will activate the STE’s state 
bit in the following cycle.  Unless the start bit is set, the state bit 
resets in any cycle in which this condition does not hold.  While 
the state bit is set, the STE will broadcast an activation signal to 
all of its outputs, which are each AND-gated against a 
corresponding interconnect configuration bits before being sent 
out to its logical successor STEs.  The interconnect 
configuration bits and the start and reporting flags are stored in 
a set of flip-flops connected in a shift register both internally and 
across all the STEs in the array.  The shift register input is driven 
by JTAG through the JTAG source interface.  As such, the 
number of available registers defines an upper bound on the 
level of interconnectivity.  Our current FPGA contains 938,880 
registers, giving an upper bound to the hardware fan-out of 32 
under the theoretical limit of 29K STEs.  The STE design is 
parameterized, allowing the synthesizer to customize it with a 
specified hardware fan-out. 

B. Interconnect Design 

The physical STEs on the FPGA are connected using point-
to-point links, where each STE sends an output signal to itself 
and f – 1 of its neighbors, where f = the hardware fan-out.  The 
STEs adopt a one-dimensional addressing scheme, where each 
STE has an ID number assigned contiguously and sends output 

signals to STEs ݊ െ ቔିଵ
ଶ
ቕ to ݊  ቔ



ଶ
ቕ where n = the STE ID. 

Our proposed top-level design is different from that of the 
Micron AP, which uses a hierarchical switched interconnect that 
gives each STE the ability to send signals to a larger pool of 
potential successor STEs.   However, a switched interconnect 
complicates NFA preprocessing, as the synthesis tools must 
place and route the states onto the fabric while managing shared 
interconnect resources.  On the other hand, our design requires 
only consideration of state-to-STE mapping, since there are 
dedicated, non-shared wires between each pair of connectable 
STEs. 

C. STE Mapping Algorithm 

Existing tools such as VASim are capable of optimizing and 
transforming NFA descriptions.  Examples such transformations 
include removing repeated NFA substructures or using state 
replication to restrict the maximum number of incoming or 
outgoing transitions into or out of a single state.  These 
properties are often called maximum fan-in or fan-out, but we 
refer to them as logical fan-in and fan-out to differentiate 
properties of the NFA description from the underlying hardware. 

The basic element defined in a Micron ANML file is the state 
transition element (STE), which shares its name with the 
element of reconfiguration in our overlay (and the Micron AP).  
In order to avoid confusion, we refer to the STEs in the ANML 
file as “logical STEs” and the STEs in the overlay as “physical 
STEs”. 

 
Fig. 2.  STE Design. 



In other words, the logical fan-in and fan-out define the 
maximum number of incoming and outgoing transitions per state 
in the NFA topology, while the hardware fan-out, in our overlay, 
determines the number of physical outputs per STE in the 
hardware.  Despite the similarity in names, there is no concrete 
relationship between these values, since each STE’s outputs in 
the hardware connect to a shared set of neighboring STEs.  The 
hardware fan-out also constrains the reach of an STE’s outputs 

as ݅ െ ݆  ቂ
ିଵ

ଶ
ቃ and ݆ െ ݅  ቂ



ଶ
ቃ for hardware fan-out f, for any 

edge in the NFA description ݏ → ݀  where logical STE s is 
mapped to physical STE i and logical STE d is mapped to 
physical STE j. 

As shown in Fig. 3, logical STEs in the ANML file are 
identified by strings but are mapped to physical STE addresses 
in the overlay array.  In the figure, the logical STE names are 
shown as “first”, “second”, etc. while their corresponding 
physical STE IDs are shown in the adjoining box.  Each physical 
STE can only activate another physical STE whose address is 
reachable, as determined by the hardware fan-out parameter. 

Our mapping algorithm is shown as Algorithm 1 and is 
comprised of four routines.  The validate_edges routine checks 
each edge to determine if it violates a placement constraint.  The 
check_move routine evaluates the quality of a proposed solution 
for an edge constraint violate with respect to the set of possible 
alternative solutions.  The move_ste routine modifies the 
placement of a given edge and adjusts other edges accordingly.  
Finally, the calculate_score routine evaluates the score of a set 
of edges. 

Algorithm 1:  Edge Validation and Re-Mapping 

validate_edges (IN: NFA edges; OUT: NFA edges) 
1 FOR each edge x y in the current physical STE 

assignment 
2   IF (y-x) < ((-f-1)/2) OR (y-x)> (f/2) THEN 

3     SET max_differential_score = -INT_MAX 

4     FOR k FROM 0 TO f-1 

5       from = x, to = y-f/2+k 

6       check_move(from,to, 
        max_differential_score,best_from,best_to) 

7     END FOR 

8     FOR k FROM 0 TO f-1 

9       from = y, to = x-(f-1)/2+k 

10       check_move(from,to, 
        max_differential_score,best_from,best_to) 

11     END FOR 

12   END IF 

13 END FOR 

check_move (IN: from, to; INOUT: 
max_differential_score, best_to, best_from) 
14 score = calculate_score(from,to) 

 
15 Move_STE (from,to) 

16 SET score =score - calculate_score(from,to) 

17 Move_STE (to,from)  // “undo” move 

18 IF score > max_differential_score THEN 

19   best_to = to, best_from = from 

20 END IF 

move_STE (IN: from, to; OUT: NFA edges) 
21 IF from < to THEN 

22   FOR each edge i  j 

23     IF j == from THEN 

24       replace i  j with i  to ELSE 

25       IF j > from AND j <= to THEN 

26         replace i  j with i  j-1 

27       END IF 

28     END IF 

29   END FOR 

30 ELSE  

31   FOR each edge i  j 

32     IF j == from THEN 

33       replace i  j with i  to ELSE 

34       IF j >= to AND j < from THEN 

35         replace i  j with i  j+1 

36       END IF 

37     END IF 

38   END FOR 

39 END IF 

calculate_score (IN: from, to) 
40 SET sum = 0 

41   FOR each edge i  j WHERE: 
    (from <= i <= to OR to <= i <=from) OR 
    (from <= j <= to OR to <= j <=from) 

42     sum = sum + abs(i-j) 

43   END FOR 

44 RETURN sum 

 

1) validate_edges 
Our algorithm initially maps each logical STE to a physical 

STE according to the order in which the STE appears in the 
ANML file.  Then, the algorithm iteratively scans each edge to 
detect mapping errors.  The validate_edges routine performs one 
scan.  Line 2 checks for a placement constraint violation.  The 
loops on lines 4 to 12 evaluate each possible solution to the 
violation, either by changing the mapping of the source STE 



(lines 4 to 7) or by changing the mapping of the destination STE 
(lines 8 to 12). 

2) check_move 
The check_move routine evaluates the effect of re-mapping 

the logical STE mapped to physical STE from to physical STE 
to.  The routine first calculates the score of the subset of edges 
effected by the remapping (line 14), performs the remapping 
(line 15), recalculates the score (line 16), and then reverts the 
remapping to restore the original state of the graph (line 17).  The 
routine checks the resulting difference in score and updates the 
“best found” remapping if the impact in score exceeds that of 
any previously-tested remapping (lines 18 to 19). 

3) move_STE 
The move_ste routine performs a remapping operation on the 

graph by reassigning a physical STE from location from to 
location to. 

This operation is depicted in Fig. 3.  On the left side, there is 
an edge connecting logical STEs “fifth” and “second”, which are 
mapped to physical STEs n and m where n > m.  This remapping 
requires that the physical mapping of all logical STEs from m to 
n-1 be moved down to m+1 to n to make room for the insertion 
of original STE n into new position m. 

4) calculate_score 
The calculate_score routine accumulates the distance of all 

incoming and outgoing edges into the given STE range.  The 
intuition is of this score function is that remapping operations 
should result in an overall reduction in total edge distance. 

D. I/O Interface 

A 128K x 8-bit M20K-based RAM serves as the input buffer, 
allowing the streaming of up to 128 KB of input data into the 
STE array at one symbol per cycle.  The runtime system 
configures the input buffer over JTAG using the Intel in-system 
memory content editor through the JTAG interface. 

The user may configure any STE as a reporting state, where 
the user configures the reporting attribute as a flag in the ‘report’ 

flip-flop within each STE.  This value is AND’ed with the active 
bit to drive the report output.  The reporting output from each 
group of 1024  STEs are combined in a group.  In any cycle in 
which any of these bits is set, the 1024-bit value, along with the 
value of the counter that tracks the offset in the input stream, are 
written into a 1024 x 1041 M20K-based RAM, allowing up to 
1K of the 128K inputs to generate a report for each group of 
1024 contiguous STEs. 

E. FPGA Floorplanning 

The Stratix 5 GX A7 contains 128 rows and 209 columns of 
equal-sized blocks , where each block can be one of a LAB, 
MLAB, M20K RAM, or DSP block.  Each LAB/MLAB 
contains 10 ALMs (Adaptive Logic Module), each of which 
containing 64x1 bits of LUT RAM and four flip-flops, although 
the user may only may use the LUTs as RAM in the MLABs 
blocks (not the LAB blocks). 

As shown in Fig. 4, FPGA is logically divided into a left and 
right half by two large phase locked loops (PLL) on the top and 
bottom of the chip, each comprising an area that would 
otherwise contain of 21 rows by 8 columns of blocks.  These 
PLL areas are not programmable but they are traversed by 
horizontal routing tracks.  Using location constraints (logic lock 
regions) we divided the FPGA into 256 areas, two per block row.  
We map each set of N / 256 STEs to each of these regions, 
starting from the upper-left and proceeding using a zig-zag 
pattern to the right, down, left, down, right, etc.  Because the 
interconnection pattern flows to the right, this assignment 
pattern minimizes wire length. 

V. EVALUATION 

In this section we give results that characterize both our 
hardware implementation and the effectiveness of our placement 
algorithm. 

A. Overlay Configurations 

To characterize the cost of the interconnect we synthesized 
overlays of various sizes and searched for the corresponding 
maximum hardware fan-out for each array size. 

Table 1 summarizes the Pareto optimal frontier for our 
overlay designs.  The first column shows the number of STEs 
divided by 1024.  The second column shows the maximum 
hardware fan-out achieved with the FPGA design flow without 
exceeding the FPGA’s resources.  The third column shows the 
maximum clock frequency.  As a comparison, the Micron AP’s 
clock operates at 133 MHz [21].  The fourth column shows the 
FPGA resource usage.  The last three columns show the on-chip 
memory required by the corresponding design.  The total 
memory includes the 128 KB input buffer and the 1024-deep 
output buffer.  Our maximum array size is 24K STEs with a 
hardware fan-out of 5, while our maximum hardware fan-out is 
24 with 8K STEs. 

B. Interconnect Scaling 

Table 2 shows the impact of the interconnection network on 
the utilization of routing resources in the FPGA for the 16K STE 
design with hardware fan-out from 6 to its maximum of 14.  

Fig. 3.  Remapping physical STEs.  Edge between logical STE “fifth” 
and “second” is reassigned from physical STEs n and m, where n > m, 
to m and m+1 (after an operation “move STE n to m”).  In this case, a 
movement from a higher-numbered STE to a lower-numbered STE 
causes all other STEs assignments between the two values to shift up, 
requiring an update to all other edges involving these physical STEs. 



Each column shows the utilization of different types of routing 
resources in the FPGA fabric. 

In Intel’s technology, block interconnect (column 2) 
connects pairs of ALMs from adjacent blocks.  Local 
interconnect (column 3) connects ALMs within a LAB or 
MLAB.  R24, R3, and R6 are longer-reach wires that run 
horizontally along a row of blocks.  The utilization of each of 
these interconnect types scale with the hardware fan-out.  The 
last column gives total LAB utilization.  As shown in the table, 
the hardware fan-out is limited by LABs--possibly required by 
the f-input OR gates within each STE--as opposed to fabric-level 
interconnect utilization required by the additional routes 
between STEs. 

C. Mapping ANMLZoo  Benchmark Suite to the Overlay 

In order to evaluate the suitability of the overlay for realistic 
workloads, we performed an analysis of the NFA benchmarks in 
the ANMLZoo benchmark suite [17].  The NFA optimization 
tool VASim [18] allows for trading off logical STEs and the 
maximum number of incoming and outgoing transitions per STE 
(logical fan-in and fan-out).  Note that the logical fan-in and fan-
out values do not equate to the hardware fan-out in the overlay, 
since the hardware fan-out defines the maximum “reach” of each 
STE-to-STE connection.  Also, each STE connects to a set of 
STEs that are shared among multiple STEs, potentially causing 
placement contention.  As such, one of the challenges when 
implementing these benchmarks onto the overlay is find a valid 
mapping for a given benchmark. 

 

TABLE 1:  OVERLAY CONFIGURATIONS 

TABLE 2:  IMPACT OF INTERCONNECT SCALING 

H/W 
Fan-
out 

Block 
intrcon’t 

Local 
interconnect R24 R3 R6 

# LABs 
utilized 

6 25% 21% 25% 14% 25% 81% 
10 34% 25% 33% 18% 35% 94% 
11 35% 27% 31% 20% 36% 95% 
12 42% 29% 38% 29% 46% 97% 
14 44% 32% 41% 30% 47% 98% 

 

Table 3 shows the results of our analysis.  The second 
column shows the number of STEs required by the original, 
unoptimized version of the benchmark design with Boolean 
elements removed, except for Protomata which we must 
optimize to restrict maximum fan-out due to its unusually high 
native fan-out of 109.  Columns three and four show the 
maximum fan-in and fan-out and column four shows the 
minimum hardware fan-out needed to find a valid mapping 
solution. 

Our algorithm fails to map PowerEN, Snort, DotStar, and 
Protomata with a reasonable hardware fan-out due to their 
logical interconnect complexity.  In these cases, the greedy 
nature of our placement algorithm leads to infinite repeating 
remapping sequences.  We plan to address this problem in a 
future version of our mapping algorithm. 

In its current form, the algorithm is not practical due to the 
difference between its minimal hardware fan-out constraints, 
shown in the last column of Table 3, and the achieved hardware 
fan-out in the synthesized overlay architecture, shown in the 
second column of Table 1.  We will continue to develop both the 
mapping algorithm and hardware design to close this gap. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we described a parameterizable overlay 
architecture for automata processing on an FPGA.  The current 
version of the overlay supports up to 24K state transition 
elements (STEs) on a previous-generation 28 nm Intel Stratix 5 
GX A7 FPGA, as compared to 48K of the Micron Automata 
Processor.  The overlay uses a point-to-point non-switched 
programmable interconnect, simplifying the FPGA 
implementation at the cost of increased constraints. 

In future work we will work to develop a more effective 
placement algorithm.  One possible approach is to partition the 
target NFA topology into smaller, independent sub-automata 
that that placer can place more effectively.  This will have the 

STEs 
(K) 

Max. 
H/W 
Fan-
out 

Fmax 
(MHz) ALMs 

MLAB 
mem. 

(Mbits) 
Reg. 

(Kbits) 

Total 
mem. 
(MB) 

4 24 152 42% 1 104 0.6 
8 24 136 77% 2 208 1.6 
12 23 122 95% 3 300 2.3 
16 14 121 96% 4 256 2.9 
20 8 119 93% 5 200 3.4 
24 5 112 95% 6 168 4.0 

 
Fig. 4.  FPGA floorplan.  The dark rectangles on the top and bottom of the 
chip are non-programmable areas reserved for the PLLs, although some 
horizontal routing tracks run over them.  Our design consists of 256 
placement regions, two per row, across the 128 rows.  Each region contains 
N/256 STEs, where N = the number of instanciated STEs.  The STEs 
connect left-to-right, so the design mostly relies on horizontal routes for 
STE-to-STE connections, while it uses vertical routes for input and output. 



added benefit of allowing NFAs that would not other fit on the 
overlay. 

We also plan to explore more flexible more flexible designs 
for our programmable interconnect, including switched designs. 

Finally, we plan to change our configuration strategy from 
JTAG to using a combination of PCI-express and DDR3 DRAM 
to improve the rate at which the array is configured. 

TABLE 3:  ANMLZOO RESULTS 

REFERENCES 
[1] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and 

Harold Noyes, "An efficient and scalable semiconductor architecture for 
parallel automata processing," IEEE Transactions on Parallel and 
Distributed Systems 25.12 (2014): 3088-3098. 

[2] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and 
memory-efficient regular expression matching for deep packet 
inspection,” in Proceedings of the 2006 ACM/IEEE symposium on 
Architecture for networking and communications systems, San Jose, 
California, USA, 2006, pp. 93-102. 

[3] R. Sidhu, and V. K. Prasanna, “Fast Regular Expression Matching using 
FPGAs,” in IEEE Symposium on Field-Programmable Custom 
Computing Machines, 2001. 

[4] Y.-H. E. Yang, W. Jiang, and V. K. Prasanna, “Compact architecture for 
high-throughput regular expression matching on FPGA,” in Proceedings 
of the 4th ACM/IEEE Symposium on Architectures for Networking and 
Communications Systems, San Jose, California, 2008, pp. 30-39.  

[5] Y.-H.E. Yang and V.K. Prasanna, ‘‘High-Performance and Compact 
Architecture for Regular Expression Matching on FPGA,’’ IEEE Trans. 
Comput., vol. 61, no. 7, pp. 1013-1025, July 2012. 

 

 

 

 

 

 

 

 

 

[6] Becchi, Michela, and Patrick Crowley. "Efficient regular expression 
evaluation: theory to practice." Proceedings of the 4th ACM/IEEE 
Symposium on Architectures for Networking and Communications 
Systems. ACM, 2008. 

[7] Becchi, Michela, and Patrick J. Crowley. "Data structures, algorithms and 
architectures for efficient regular expression evaluation, Washington 
University, St." Louis, MO (2009). 

[8] Chen, Xinming, et al. "Picking pesky parameters: Optimizing regular 
expression matching in practice." IEEE Transactions on Parallel and 
Distributed Systems 27.5 (2016): 1430-1442. 

[9] K. Wang, M. Stan, K. Skadron, “Association Rule Mining with the 
Micron Automata Processor,” in IEEE 29th International Parallel and 
Distributed Processing Symposium, May 2015 

[10] K. Zhou, J.J. Fox, K. Wang, D.E. Brown, K. Skadron, “Brill tagging on 
the Micron automata processor,” in IEEE 9th International Conference on 
Semantic Computing (ICSC), pp. 236–239, 2015. 

[11] K. Zhou, J. Wadden, J.J. Fox, K. Wang, D.E. Brown, K. Skadron, 
“Regular expression acceleration on the Micron automata processor: Brill 
tagging as a case study,” IEEE International Conference on Big Data (Big 
Data 2015). 

[12] T. Tracy, M. Stan, N. Brunelle, J. Wadden, K. Wang, K. Skadron, G. 
Robins, “Nondeterministic Finite Automata in Hardware – the Case of the 
Levenshtein Automaton,” in 5th International Workshop on Architectures 
and Systems for Big Data (ASBD), in conjunction with the 42nd 
International Symposium on Computer Architecture (ISCA 2015). 

[13] I. Roy, S. Aluru, “Finding Motifs in Biological Sequences Using the 
Micron Automata Processor,” in IEEE 28th International Parallel and 
Distributed Processing Symposium, pp. 415–424, May 2014. 

[14] K. Angstadt, W. Weimer, and K. Skadron, “RAPID programming of 
pattern-recognition processors,” in Proceedings of the 21st International 
Conference on Architectural Support for Programming Languages and 
Operating Systems, ASPLOS ’16, pp. 593–605, 2016. 

[15] Vaughn Betz, Jonathan Rose, "VPR: a new packing, placement and 
routing tool for FPGA research," Proc. 1997 International Workshop on 
Field Programmable Logic and Applications, pp 213-222. 

[16] Wadden, Jack, Samira Khan, and Kevin Skadron. "Automata-to-Routing: 
An Open-Source Toolchain for Design-Space Exploration of Spatial 
Automata Processing Architectures." Field-Programmable Custom 
Computing Machines (FCCM), 2017 IEEE 25th Annual International 
Symposium on. IEEE, 2017. 

[17] J. Wadden, et al. "ANMLzoo: a benchmark suite for exploring bottlenecks 
in automata processing engines and architectures," Workload 
Characterization (IISWC), 2016 IEEE International Symposium on. 
IEEE, 2016. 

[18] J. Wadden, K. Skadron. “VASim: An open virtual automata simulator for 
automata processing application and architecture research,” Technical 
Report CS2016-03, University of Virginia, 2016. 

[19] Yuanwei Fang, Tung T. Hoang, Michela Becchi, Andrew A. Chien, "Fast 
Support for Unstructured Data Processing: the Unified Automata 
Processor," Proc. MICRO-48, 2015. 

[20] M. Nourian, X. Wang, X. Yu, W. Feng and M. Becchi. 2017. 
Demistifying Automata Processing: GPUs, FPGAs or Micron’s AP? In 
Proceedings of ACM International Conference on Sup 

[21] Wang, Ke, et al. "An overview of micron's automata processor," Proc. 
Eleventh IEEE/ACM/IFIP International Conference on 
Hardware/Software Codesign and System Synthesis. ACM, 
2016.ercomputing, Chicago, Illinois USA, June 2017 (ICS’17), 11 pages. 

 

 

 

 

 

 

 

 

 

 

ANML 
Benchmarks #STEs 

Maximum 
Logical 
Fan-in 

Maximum 
Logical 
Fan-out 

Minimum 
Hardware 
Fan-out 

Achieved 
Brill 26668 4 4 42 

Clam AM 49538 11 2 22 
Levenshtein 2784 8 5 22 
Hamming 11346 4 2 85 

SPM 100500 3 2 22 
EntityResolution 95136 28 5 200 
RandomForest 
(300f_15t_tree) 

75340 2 2 7 

PowerEN 
(01000_00123) 

40513 4 3 cannot 
place 

Snort 
(after removing 

special elements) 

69029 19 19 cannot 
place 

Fermi 40783 2 2 27 
DotStar 

(after removing 
special elements) 

96438 2 2 cannot 
place 

Protomota 
(after removing 

special elements) 

42061 3 9 
(optimized) 

cannot 
place 


