
978-1-5386-3797-5/17/$31.00 ©2017 IEEE

A Dynamically Reconfigurable

Automata Processor Overlay

Rasha Karakchi
Dept. of Computer Science and Engineering

Univ. of South Carolina
Columbia, SC USA

karakchi@email.sc.edu

Lothrop O. Richards III
Dept. of Computer Science and Engineering

Univ. of South Carolina
Columbia, SC USA

lothropr@email.sc.edu

Jason D. Bakos
Dept. of Computer Science and Engineering

Univ. of South Carolina
Columbia, SC USA
jbakos@cse.sc.edu

Abstract—This paper describes a design for a parameterizable
automata processor overlay and a placement algorithm required
for its support software. The resulting framework serves as both
an open-source alternative to Micron’s Automata Processor (AP)
and as an experimental testbed for exploration of architectural
tradeoffs. An automata processor is a processor-in-memory
architecture designed to recognize patterns in streaming data.
Our framework takes a description of a nondeterministic finite
automata (NFA) described in Micron’s ANML language and uses
instantiated JTAG sources to configure the on-chip RAM and
programmable interconnect of the overlay programmed onto an
FPGA. Like the Micron AP, our design is comprised of an array
of interconnected state transition elements (STEs). While our STE
design is equivalent to that of the Micron AP, our overlay uses a
simpler, non-switched interconnect based on pairwise gated
connections. This interconnect design creates a constraint
satisfaction problem when mapping logical states to the physical
STEs. In this paper, we explore the impact of tradeoffs in the
interconnect architecture as it relates to a Stratix 5 GX target
device and we describe and evaluate an algorithm for STE
placement with respect to the ANMLZoo benchmark suite. As far
as the authors know, this is the first example of an FPGA-based
automata processor overlay.

Keywords—automata processor, Micron AP, NFA, processor-in-
memory, reconfigurable computing, pattern matching, ANML,
FPGA, heterogeneous computing, accelerator, high-performance
computing, big data, data analytics

I. INTRODUCTION

Many tasks in big data analytics are built upon pattern
matching and classification operations. Examples include
approximate string matching, calculating the distance between
two genomic sequences, signature-based threat detection,
feature extraction, and association rule mining. Such pattern
matching tasks are reducible to instances of deterministic finite
automata (DFA) or nondeterministic finite automata (NFA).
When evaluated on a CPU, the computational throughput of
DFA and NFA are generally limited by cache performance,
which (for large pattern sets) is itself limited by the inherently
unpredictable memory access pattern of state transition tables.
Achieving transformative performance improvements for these
types of tasks require specialized processors having customized
memory structures, such as the Micron Automata Processor
(AP) [1].

The Micron AP is a programmable, spatial architecture for
implementing arbitrary NFAs. The current generation Micron
AP stores state activation in a 48 kilobit register and stores the
state transition table in two separate memory structures: an array
of 48K 256x1 asynchronous RAMs that store the input symbols
and a programmable interconnect that stores the logical topology
of the NFA’s transitions. During operation, the interconnect
serves as a function that maps the output of the RAMs to the
input of the state registers.

The AP’s basic unit of configuration is the state transition
element (STE), which contains a 256x1 RAM and one state
register. Like an FPGA, the AP’s programmable interconnect is
hierarchical, in which localized groups of STEs are more
density-connected than more distant STEs. Since the
interconnect requires a significant amount of real estate, there is
fundamental tradeoff between the number of STEs and the
interconnect density. For the Micron AP, this tradeoff is fixed,
while an FPGA-based automata processor can offer a repertoire
of design space alternatives while still offering the ability to re-
use any one design for multiple NFA descriptions.

In this paper, we describe and evaluate a reusable FPGA-
based overlay architecture that exhibits most of the functionality
of the Micron AP and can rapidly adapt its behavior to match
that of an arbitrary NFA description without requiring a full
FPGA synthesis or reconfiguration. Unlike previous work that
requires the FPGA design be re-synthesized for each NFA, our
design is an abstraction that is synthesized once but is
reconfigurable in-place on the FPGA. We target an Intel Stratix
5 GX A7 FPGA, which contains 7 Mb of asynchronous (LUT-
based) RAM and 938,880 registers. This would potentially
allow for the design of an AP array of up to 28,672 STEs or
approximately one-half the capacity of a Micron AP. In this
paper, we demonstrate experimental results for deployed designs
of up to 24,576 STEs, roughly 86% of the theoretical capacity
bound.

II. BACKGROUND

Deterministic Finite Automata (DFA) are commonly used to
implement regular expressions and to design sequential digital
logic. DFA are comprised of a set of states connected by
labeled-edges. During operation, a DFA may have one active
state at any time and accesses only one entry of its state transition
table and thus must contain a state for every possible partial

match of every possible pattern. This can lead to combinatorial
growth of the state space and next-state table.

Nondeterministic Finite Automata (NFA) differ from DFA
in that multiple states may be simultaneously active, allowing
for the tracking of multiple partial matches in parallel. As a
result, an NFA generally requires a substantially smaller state
transition table as compared to an equivalent DFA.

Fig. 1 a and b show an example DFA and NFA that recognize
a simple pattern “ababc” along with their corresponding state
transition tables. The next state table for the NFA is 2.6 X
smaller than that of the DFA. Fig. 1c shows the activation
sequence for the input pattern “abababc”.

The AP’s architecture inherently requires an alternative form
of the NFA as shown in Fig 1d, where the transition labels are
associated with the states as opposed to the edges. In this form,
all transitions into each state (from all immediate predecessor
states) must activate on the same set of input symbols. Using
this form allows the STEs to store the symbols associated with
the incoming transitions to each state.

The State Transition Element (STE) is the Automata
Processor’s basic element of reconfiguration. Each STE
contains an activation flip-flop that holds the STE’s active state
equivalent to that of one-hot encoding. Each STE is
interconnected with other STEs by accepting activation inputs
from predecessor STEs and outputting activation signals to
successor STEs. The STE’s activation inputs are fanned into an
OR-gate. Each STE also contains a 256-to-1 asynchronous
RAM that stores a 1-bit corresponding to each of the input
symbols associated with the state. The address input to this table
is connected to the global, top-level input symbol. The OR-gate
and the RAM work together to activate the state; internal logic
sets the STE’s activation flip-flop when at least one of the STE’s
activation inputs are asserted and there is a one-bit stored in the
currently-indexed location in the RAM. Any other condition
resets the flip-flop to zero.

The AP’s routing matrix is built using tri-state switches that
can form arbitrary connections between different pairs of STEs
using a pool of shared physical wires. The switches and wires
are arranged hierarchically, where the interconnectivity between
STEs is highest at lower levels of the hierarchy. Starting from

the bottom of the hierarchy, there are two STEs to a Group of
Two (GoT), eight GoTs to a row (16 STEs), sixteen rows to a
block (256 STEs), 96 blocks to a half-chip (24K STEs), and two
half-chips to an AP (48K STEs). As is the case for FPGAs, the
design of the routing matrix places physical constraints on the
logical topology of the implemented NFA.

III. PREVIOUS WORK

This section summarizes prior work in four related areas: (1)
methods for synthesizing automata-type architectures onto an
FPGA fabric, (2) applications that benefit from such
architectures, (3) open source automata models and
architectures, and (4) tools and methods for optimizing automata
descriptions.

A. Synthesis NFAs and Regular Expressions

FPGA implementation of regular expression matchers are
often inspired by networking applications [2] and many of these
are based on automata-based architectures. For these
approaches a significant challenge is the high cost of logic
synthesis and place-and-route for each set of regular expressions
to be implemented.

Yang and Prasanna developed early methods for
synthesizing regular expressions into logic mapped onto two
specific FPGA devices, a Xilinx Virtex XCV100 (20x30 array
of configurable logic blocks) and a conceptual Self-
Reconfigurable Gate Array (SRGA) device [3]. Their original
approach bypassed the synthesis flow and directly targeted the
low-level FPGA fabric. However, as FPGA technology matured
this approach became infeasible, and their second design
targeted HDL but introduced additional optimization methods
for both the NFA descriptions and generated architecture [4,5].

Becchi et al developed a set of techniques for optimizing
both NFA and DFA-based architectures [6 , 7 , 8], including
several approaches to identify and explore design parameters
that have the most significant impact on the performance and
cost of the corresponding NFA and DFA implementation.
Examples of these include alphabet size, number of inputs read
per cycle (stride), and storage of next state tables in logic and/or
RAM.

This material is based upon work supported by the National Science
Foundation under Grant No. 1421059.

Fig. 1. DFA vs. NFA and conversion of NFA with edge labels to state labels.

B. Mapping Applications to AP Execution Model

Automata-based architectures are most commonly
associated with regular expression evaluation, but the
introduction of the Automata Processor has generated interest in
identifying other applications that map to NFA-type
architectures, or so-called “pattern recognition processors.”
Examples include association rule mining [9], brill tagging
[10,11], and Levenshtein and Hamming distance calculation
[12]. More specific examples include Protomata and Motomata
[13], which search for motifs--or common approximate DNA
subsequences among a group of genomes--in which each motif
is identified by NFA-based pattern loaded onto the AP during
runtime. For these, the performance of the AP depends on its
ability to quickly synthesize and load patterns onto the AP.
There are also efforts to develop general-purpose programming
languages for NFA-type architectures, such as RAPID, a
proposed high-level programming language for pattern
recognition processors [14].

C. Open Source Automata Processor Architectures,
Simulators, and Benchmarks

Wadden et al. developed a place and route tool built on VPR
[15] that targets a conceptual design for a theoretical Automata
Processor fabric [16]. This tool serves as an experimental
framework with which to explore the impact of routing
algorithms and interconnect design on performance and
efficiency. Using this tool they compared the hierarchical
design of the AP routing matrix to a non-hierarchical mesh-
based network-on-chip and concluded that the ideal interconnect
architecture depends on the input NFA topology.

The same group compiled a suite of NFA benchmarks called
ANMLZoo containing a representative example of an NFA
description, sample input, and expected outputs for every
publicly-released application for the AP as well as two synthetic
benchmarks [17]. They also developed open source tool that can
simulate the evaluation of arbitrary ANML descriptions and
perform basic transformations to NFA such as elimination of
counters and Boolean elements and use of state replication to
limit the maximum in-degree (fan in) and out-degree (fan out)
of the NFA [18].

Fang et al. designed the Unified Automata Processor (UAP),
a set of vector extensions added to a traditional von Neuman
CPU optimized for implementing a variety of NFA-based
programming models [19]. The UAP exploits parallelism by
concurrently traversing one edge per cycle for each of its 64
lanes. The design stores NFA transitions in local memory
attached to each lane, equally 1 MB in total. The transitions are
stored in a compact, efficient format but the design is limited to
NFAs that can fit into the local memory.

D. Optimization Methods for NFA Descriptions

Recent work has contributed new methods for transforming
NFA descriptions into alterative but functionally-equivalent
forms, such as eliminating redundant sub-substructures within
the NFA logical topology [18].

Becchi et al developed an algorithm for partitioning NFA
descriptions into roughly equal-sized sub-automata while
minimizing the number of state replications and balancing the

sizes of the resulting sub-automata [20]. This technique
facilitates the usage of NFA descriptions on architectures that
are limited by on chip memory capacity to NFAs having less
transitions or states.

E. Comparative Studies of NFA Implementations on CPUs,
GPUs, and FPGAs

Once configured with an NFA description, the Micron
Automata Processor, the Unified Automata Processor, and all
FPGA-based automata processors generally achieve high
traversal throughput of one or two input symbols per clock cycle.
Processing NFAs that are too large to fit on a particular device
requires multiple passes of the input stream. Preprocessing time,
which potentially includes synthesis and place-and-route, is
often an important performance consideration. CPU- and GPU-
based approaches are able to process NFAs stored in DRAM and
are generally less affected by preprocessing time, but their
traversal time--especially for larger NFAs--is limited by their
cache performance. Since the behavior of automata processors
is dependent on both the NFA structure and input stream,
performance comparisons between competing architectures is
difficult.

Becchi et al. characterized the performance of GPU, AP, and
FPGA-based automata processing approaches, finding that
FPGAs offer a traversal throughput of 2 to 3 times that of the AP
and 80 to 1000X that of a GPU at the cost of extremely high
preprocessing time. In this analysis, the preprocessing time
including a pass through the FPGA synthesis and place-and-
route design flow [20].

IV. OVERLAY ARCHITECTURE

Our AP overlay architecture is reusable (without re-synthesis
and place-and-route) across different NFA descriptions having
arbitrary state labels and arbitrary logical NFA topologies,
provided that the logical topology does not violate resource
constraints inherent in the overlay’s structure. The most
important constraint is a parameter of the interconnect that we
refer to as “hardware fan-out”, which determines the
maximum number of outgoing transitions per STE as well as the
maximum distance between a pair of connected STEs with
respect to their location in the array. For example, with a
hardware fan-out of 10, STE n can only connect to STEs n-4 to
n+5 (including to itself).

We developed several Pareto optimal versions of the overlay
with varying numbers of STEs and hardware fan-out. The
overlay architecture and software infrastructure is compatible
with Micron’s ANML NFA format, except that it currently lacks
support for Boolean and counting elements, features we plan to
incorporate into the next version of the design.

Our AP architecture design differs from the Micron AP in
two important ways. First, it has a non-switched interconnect
based on gate-able point-to-point connections between STEs.
Second, the STEs contain programmable flags that can specify
any STE as being a start state or a reporting state.

A. STE Design

Without considering the resource usage of the interconnect,
the number of STEs is limited by the on-chip RAM available to
store the input symbols associated with each STE. We refer to
this table as the current state table to remain consistent with
Micron’s terminology.

Our evaluation FPGA is an Intel Stratix 5 GX A7. This
device has roughly 7X the on-chip memory capacity in M20K
resources than it does in its MLAB (LUT-based) resources, but
there are several practical problems with using M20K resources
for the current-state tables.

First, the M20K blocks are available in only 20 out of the
209 columns on the FPGA while the MLAB blocks are more
uniformly distributed. Using MLABs avoids congestion around
the M20K columns. Second, the current state tables have a depth
of 256, while the minimum depth required to fully utilize M20K
resources is 512, meaning that only 50% of the M20K capacity
is available for depth-256 tables. Third, the M20K requires
synchronous reads, which if used for the current state table
would potentially reduce the throughput by 1/2, as each input
symbol would require one cycle to access the current state table
and another for updating the state flip-flop. Finally, the M20K
blocks are needed for other purposes, such as to buffer the input
and output data for the AP fabric. The Stratix 5 GX 7A contains
7.16 Mb of MLAB memory, giving an upper bound of roughly
29K STEs, as compared to 48K STEs on the Micron AP.

Fig. 2 shows the design of our STE. In order to achieve
maximum utilization of the MLAB memory, the current state
tables are generated as 256-deep x M bit RAMs, where M = the
number of STEs in each placement-constrained region
(described later). Each STE accepts a one-bit input from its
corresponding column in the current state table, indexed by the

input symbol. The current state MLABs are initialized through
JTAG.

Each STE contains an OR-gate accepting activation signals
from its connected predecessor STEs. Any cycle in which any
of the incoming activation signals are asserted while receiving a
one-bit from the current state table will activate the STE’s state
bit in the following cycle. Unless the start bit is set, the state bit
resets in any cycle in which this condition does not hold. While
the state bit is set, the STE will broadcast an activation signal to
all of its outputs, which are each AND-gated against a
corresponding interconnect configuration bits before being sent
out to its logical successor STEs. The interconnect
configuration bits and the start and reporting flags are stored in
a set of flip-flops connected in a shift register both internally and
across all the STEs in the array. The shift register input is driven
by JTAG through the JTAG source interface. As such, the
number of available registers defines an upper bound on the
level of interconnectivity. Our current FPGA contains 938,880
registers, giving an upper bound to the hardware fan-out of 32
under the theoretical limit of 29K STEs. The STE design is
parameterized, allowing the synthesizer to customize it with a
specified hardware fan-out.

B. Interconnect Design

The physical STEs on the FPGA are connected using point-
to-point links, where each STE sends an output signal to itself
and f – 1 of its neighbors, where f = the hardware fan-out. The
STEs adopt a one-dimensional addressing scheme, where each
STE has an ID number assigned contiguously and sends output

signals to STEs ݊ െ ቔିଵ
ଶ
ቕ to ݊ ቔ

ଶ
ቕ where n = the STE ID.

Our proposed top-level design is different from that of the
Micron AP, which uses a hierarchical switched interconnect that
gives each STE the ability to send signals to a larger pool of
potential successor STEs. However, a switched interconnect
complicates NFA preprocessing, as the synthesis tools must
place and route the states onto the fabric while managing shared
interconnect resources. On the other hand, our design requires
only consideration of state-to-STE mapping, since there are
dedicated, non-shared wires between each pair of connectable
STEs.

C. STE Mapping Algorithm

Existing tools such as VASim are capable of optimizing and
transforming NFA descriptions. Examples such transformations
include removing repeated NFA substructures or using state
replication to restrict the maximum number of incoming or
outgoing transitions into or out of a single state. These
properties are often called maximum fan-in or fan-out, but we
refer to them as logical fan-in and fan-out to differentiate
properties of the NFA description from the underlying hardware.

The basic element defined in a Micron ANML file is the state
transition element (STE), which shares its name with the
element of reconfiguration in our overlay (and the Micron AP).
In order to avoid confusion, we refer to the STEs in the ANML
file as “logical STEs” and the STEs in the overlay as “physical
STEs”.

Fig. 2. STE Design.

In other words, the logical fan-in and fan-out define the
maximum number of incoming and outgoing transitions per state
in the NFA topology, while the hardware fan-out, in our overlay,
determines the number of physical outputs per STE in the
hardware. Despite the similarity in names, there is no concrete
relationship between these values, since each STE’s outputs in
the hardware connect to a shared set of neighboring STEs. The
hardware fan-out also constrains the reach of an STE’s outputs

as ݅ െ ݆ ቂ
ିଵ

ଶ
ቃ and ݆ െ ݅ ቂ

ଶ
ቃ for hardware fan-out f, for any

edge in the NFA description ݏ → ݀ where logical STE s is
mapped to physical STE i and logical STE d is mapped to
physical STE j.

As shown in Fig. 3, logical STEs in the ANML file are
identified by strings but are mapped to physical STE addresses
in the overlay array. In the figure, the logical STE names are
shown as “first”, “second”, etc. while their corresponding
physical STE IDs are shown in the adjoining box. Each physical
STE can only activate another physical STE whose address is
reachable, as determined by the hardware fan-out parameter.

Our mapping algorithm is shown as Algorithm 1 and is
comprised of four routines. The validate_edges routine checks
each edge to determine if it violates a placement constraint. The
check_move routine evaluates the quality of a proposed solution
for an edge constraint violate with respect to the set of possible
alternative solutions. The move_ste routine modifies the
placement of a given edge and adjusts other edges accordingly.
Finally, the calculate_score routine evaluates the score of a set
of edges.

Algorithm 1: Edge Validation and Re-Mapping

validate_edges (IN: NFA edges; OUT: NFA edges)
1 FOR each edge x y in the current physical STE

assignment
2 IF (y-x) < ((-f-1)/2) OR (y-x)> (f/2) THEN

3 SET max_differential_score = -INT_MAX

4 FOR k FROM 0 TO f-1

5 from = x, to = y-f/2+k

6 check_move(from,to,
 max_differential_score,best_from,best_to)

7 END FOR

8 FOR k FROM 0 TO f-1

9 from = y, to = x-(f-1)/2+k

10 check_move(from,to,
 max_differential_score,best_from,best_to)

11 END FOR

12 END IF

13 END FOR

check_move (IN: from, to; INOUT:
max_differential_score, best_to, best_from)
14 score = calculate_score(from,to)

15 Move_STE (from,to)

16 SET score =score - calculate_score(from,to)

17 Move_STE (to,from) // “undo” move

18 IF score > max_differential_score THEN

19 best_to = to, best_from = from

20 END IF

move_STE (IN: from, to; OUT: NFA edges)
21 IF from < to THEN

22 FOR each edge i j

23 IF j == from THEN

24 replace i j with i to ELSE

25 IF j > from AND j <= to THEN

26 replace i j with i j-1

27 END IF

28 END IF

29 END FOR

30 ELSE

31 FOR each edge i j

32 IF j == from THEN

33 replace i j with i to ELSE

34 IF j >= to AND j < from THEN

35 replace i j with i j+1

36 END IF

37 END IF

38 END FOR

39 END IF

calculate_score (IN: from, to)
40 SET sum = 0

41 FOR each edge i j WHERE:
 (from <= i <= to OR to <= i <=from) OR
 (from <= j <= to OR to <= j <=from)

42 sum = sum + abs(i-j)

43 END FOR

44 RETURN sum

1) validate_edges
Our algorithm initially maps each logical STE to a physical

STE according to the order in which the STE appears in the
ANML file. Then, the algorithm iteratively scans each edge to
detect mapping errors. The validate_edges routine performs one
scan. Line 2 checks for a placement constraint violation. The
loops on lines 4 to 12 evaluate each possible solution to the
violation, either by changing the mapping of the source STE

(lines 4 to 7) or by changing the mapping of the destination STE
(lines 8 to 12).

2) check_move
The check_move routine evaluates the effect of re-mapping

the logical STE mapped to physical STE from to physical STE
to. The routine first calculates the score of the subset of edges
effected by the remapping (line 14), performs the remapping
(line 15), recalculates the score (line 16), and then reverts the
remapping to restore the original state of the graph (line 17). The
routine checks the resulting difference in score and updates the
“best found” remapping if the impact in score exceeds that of
any previously-tested remapping (lines 18 to 19).

3) move_STE
The move_ste routine performs a remapping operation on the

graph by reassigning a physical STE from location from to
location to.

This operation is depicted in Fig. 3. On the left side, there is
an edge connecting logical STEs “fifth” and “second”, which are
mapped to physical STEs n and m where n > m. This remapping
requires that the physical mapping of all logical STEs from m to
n-1 be moved down to m+1 to n to make room for the insertion
of original STE n into new position m.

4) calculate_score
The calculate_score routine accumulates the distance of all

incoming and outgoing edges into the given STE range. The
intuition is of this score function is that remapping operations
should result in an overall reduction in total edge distance.

D. I/O Interface

A 128K x 8-bit M20K-based RAM serves as the input buffer,
allowing the streaming of up to 128 KB of input data into the
STE array at one symbol per cycle. The runtime system
configures the input buffer over JTAG using the Intel in-system
memory content editor through the JTAG interface.

The user may configure any STE as a reporting state, where
the user configures the reporting attribute as a flag in the ‘report’

flip-flop within each STE. This value is AND’ed with the active
bit to drive the report output. The reporting output from each
group of 1024 STEs are combined in a group. In any cycle in
which any of these bits is set, the 1024-bit value, along with the
value of the counter that tracks the offset in the input stream, are
written into a 1024 x 1041 M20K-based RAM, allowing up to
1K of the 128K inputs to generate a report for each group of
1024 contiguous STEs.

E. FPGA Floorplanning

The Stratix 5 GX A7 contains 128 rows and 209 columns of
equal-sized blocks , where each block can be one of a LAB,
MLAB, M20K RAM, or DSP block. Each LAB/MLAB
contains 10 ALMs (Adaptive Logic Module), each of which
containing 64x1 bits of LUT RAM and four flip-flops, although
the user may only may use the LUTs as RAM in the MLABs
blocks (not the LAB blocks).

As shown in Fig. 4, FPGA is logically divided into a left and
right half by two large phase locked loops (PLL) on the top and
bottom of the chip, each comprising an area that would
otherwise contain of 21 rows by 8 columns of blocks. These
PLL areas are not programmable but they are traversed by
horizontal routing tracks. Using location constraints (logic lock
regions) we divided the FPGA into 256 areas, two per block row.
We map each set of N / 256 STEs to each of these regions,
starting from the upper-left and proceeding using a zig-zag
pattern to the right, down, left, down, right, etc. Because the
interconnection pattern flows to the right, this assignment
pattern minimizes wire length.

V. EVALUATION

In this section we give results that characterize both our
hardware implementation and the effectiveness of our placement
algorithm.

A. Overlay Configurations

To characterize the cost of the interconnect we synthesized
overlays of various sizes and searched for the corresponding
maximum hardware fan-out for each array size.

Table 1 summarizes the Pareto optimal frontier for our
overlay designs. The first column shows the number of STEs
divided by 1024. The second column shows the maximum
hardware fan-out achieved with the FPGA design flow without
exceeding the FPGA’s resources. The third column shows the
maximum clock frequency. As a comparison, the Micron AP’s
clock operates at 133 MHz [21]. The fourth column shows the
FPGA resource usage. The last three columns show the on-chip
memory required by the corresponding design. The total
memory includes the 128 KB input buffer and the 1024-deep
output buffer. Our maximum array size is 24K STEs with a
hardware fan-out of 5, while our maximum hardware fan-out is
24 with 8K STEs.

B. Interconnect Scaling

Table 2 shows the impact of the interconnection network on
the utilization of routing resources in the FPGA for the 16K STE
design with hardware fan-out from 6 to its maximum of 14.

Fig. 3. Remapping physical STEs. Edge between logical STE “fifth”
and “second” is reassigned from physical STEs n and m, where n > m,
to m and m+1 (after an operation “move STE n to m”). In this case, a
movement from a higher-numbered STE to a lower-numbered STE
causes all other STEs assignments between the two values to shift up,
requiring an update to all other edges involving these physical STEs.

Each column shows the utilization of different types of routing
resources in the FPGA fabric.

In Intel’s technology, block interconnect (column 2)
connects pairs of ALMs from adjacent blocks. Local
interconnect (column 3) connects ALMs within a LAB or
MLAB. R24, R3, and R6 are longer-reach wires that run
horizontally along a row of blocks. The utilization of each of
these interconnect types scale with the hardware fan-out. The
last column gives total LAB utilization. As shown in the table,
the hardware fan-out is limited by LABs--possibly required by
the f-input OR gates within each STE--as opposed to fabric-level
interconnect utilization required by the additional routes
between STEs.

C. Mapping ANMLZoo Benchmark Suite to the Overlay

In order to evaluate the suitability of the overlay for realistic
workloads, we performed an analysis of the NFA benchmarks in
the ANMLZoo benchmark suite [17]. The NFA optimization
tool VASim [18] allows for trading off logical STEs and the
maximum number of incoming and outgoing transitions per STE
(logical fan-in and fan-out). Note that the logical fan-in and fan-
out values do not equate to the hardware fan-out in the overlay,
since the hardware fan-out defines the maximum “reach” of each
STE-to-STE connection. Also, each STE connects to a set of
STEs that are shared among multiple STEs, potentially causing
placement contention. As such, one of the challenges when
implementing these benchmarks onto the overlay is find a valid
mapping for a given benchmark.

TABLE 1: OVERLAY CONFIGURATIONS

TABLE 2: IMPACT OF INTERCONNECT SCALING

H/W
Fan-
out

Block
intrcon’t

Local
interconnect R24 R3 R6

LABs
utilized

6 25% 21% 25% 14% 25% 81%
10 34% 25% 33% 18% 35% 94%
11 35% 27% 31% 20% 36% 95%
12 42% 29% 38% 29% 46% 97%
14 44% 32% 41% 30% 47% 98%

Table 3 shows the results of our analysis. The second
column shows the number of STEs required by the original,
unoptimized version of the benchmark design with Boolean
elements removed, except for Protomata which we must
optimize to restrict maximum fan-out due to its unusually high
native fan-out of 109. Columns three and four show the
maximum fan-in and fan-out and column four shows the
minimum hardware fan-out needed to find a valid mapping
solution.

Our algorithm fails to map PowerEN, Snort, DotStar, and
Protomata with a reasonable hardware fan-out due to their
logical interconnect complexity. In these cases, the greedy
nature of our placement algorithm leads to infinite repeating
remapping sequences. We plan to address this problem in a
future version of our mapping algorithm.

In its current form, the algorithm is not practical due to the
difference between its minimal hardware fan-out constraints,
shown in the last column of Table 3, and the achieved hardware
fan-out in the synthesized overlay architecture, shown in the
second column of Table 1. We will continue to develop both the
mapping algorithm and hardware design to close this gap.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we described a parameterizable overlay
architecture for automata processing on an FPGA. The current
version of the overlay supports up to 24K state transition
elements (STEs) on a previous-generation 28 nm Intel Stratix 5
GX A7 FPGA, as compared to 48K of the Micron Automata
Processor. The overlay uses a point-to-point non-switched
programmable interconnect, simplifying the FPGA
implementation at the cost of increased constraints.

In future work we will work to develop a more effective
placement algorithm. One possible approach is to partition the
target NFA topology into smaller, independent sub-automata
that that placer can place more effectively. This will have the

STEs
(K)

Max.
H/W
Fan-
out

Fmax
(MHz) ALMs

MLAB
mem.

(Mbits)
Reg.

(Kbits)

Total
mem.
(MB)

4 24 152 42% 1 104 0.6
8 24 136 77% 2 208 1.6
12 23 122 95% 3 300 2.3
16 14 121 96% 4 256 2.9
20 8 119 93% 5 200 3.4
24 5 112 95% 6 168 4.0

Fig. 4. FPGA floorplan. The dark rectangles on the top and bottom of the
chip are non-programmable areas reserved for the PLLs, although some
horizontal routing tracks run over them. Our design consists of 256
placement regions, two per row, across the 128 rows. Each region contains
N/256 STEs, where N = the number of instanciated STEs. The STEs
connect left-to-right, so the design mostly relies on horizontal routes for
STE-to-STE connections, while it uses vertical routes for input and output.

added benefit of allowing NFAs that would not other fit on the
overlay.

We also plan to explore more flexible more flexible designs
for our programmable interconnect, including switched designs.

Finally, we plan to change our configuration strategy from
JTAG to using a combination of PCI-express and DDR3 DRAM
to improve the rate at which the array is configured.

TABLE 3: ANMLZOO RESULTS

REFERENCES
[1] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and

Harold Noyes, "An efficient and scalable semiconductor architecture for
parallel automata processing," IEEE Transactions on Parallel and
Distributed Systems 25.12 (2014): 3088-3098.

[2] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and
memory-efficient regular expression matching for deep packet
inspection,” in Proceedings of the 2006 ACM/IEEE symposium on
Architecture for networking and communications systems, San Jose,
California, USA, 2006, pp. 93-102.

[3] R. Sidhu, and V. K. Prasanna, “Fast Regular Expression Matching using
FPGAs,” in IEEE Symposium on Field-Programmable Custom
Computing Machines, 2001.

[4] Y.-H. E. Yang, W. Jiang, and V. K. Prasanna, “Compact architecture for
high-throughput regular expression matching on FPGA,” in Proceedings
of the 4th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, San Jose, California, 2008, pp. 30-39.

[5] Y.-H.E. Yang and V.K. Prasanna, ‘‘High-Performance and Compact
Architecture for Regular Expression Matching on FPGA,’’ IEEE Trans.
Comput., vol. 61, no. 7, pp. 1013-1025, July 2012.

[6] Becchi, Michela, and Patrick Crowley. "Efficient regular expression
evaluation: theory to practice." Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and Communications
Systems. ACM, 2008.

[7] Becchi, Michela, and Patrick J. Crowley. "Data structures, algorithms and
architectures for efficient regular expression evaluation, Washington
University, St." Louis, MO (2009).

[8] Chen, Xinming, et al. "Picking pesky parameters: Optimizing regular
expression matching in practice." IEEE Transactions on Parallel and
Distributed Systems 27.5 (2016): 1430-1442.

[9] K. Wang, M. Stan, K. Skadron, “Association Rule Mining with the
Micron Automata Processor,” in IEEE 29th International Parallel and
Distributed Processing Symposium, May 2015

[10] K. Zhou, J.J. Fox, K. Wang, D.E. Brown, K. Skadron, “Brill tagging on
the Micron automata processor,” in IEEE 9th International Conference on
Semantic Computing (ICSC), pp. 236–239, 2015.

[11] K. Zhou, J. Wadden, J.J. Fox, K. Wang, D.E. Brown, K. Skadron,
“Regular expression acceleration on the Micron automata processor: Brill
tagging as a case study,” IEEE International Conference on Big Data (Big
Data 2015).

[12] T. Tracy, M. Stan, N. Brunelle, J. Wadden, K. Wang, K. Skadron, G.
Robins, “Nondeterministic Finite Automata in Hardware – the Case of the
Levenshtein Automaton,” in 5th International Workshop on Architectures
and Systems for Big Data (ASBD), in conjunction with the 42nd
International Symposium on Computer Architecture (ISCA 2015).

[13] I. Roy, S. Aluru, “Finding Motifs in Biological Sequences Using the
Micron Automata Processor,” in IEEE 28th International Parallel and
Distributed Processing Symposium, pp. 415–424, May 2014.

[14] K. Angstadt, W. Weimer, and K. Skadron, “RAPID programming of
pattern-recognition processors,” in Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, pp. 593–605, 2016.

[15] Vaughn Betz, Jonathan Rose, "VPR: a new packing, placement and
routing tool for FPGA research," Proc. 1997 International Workshop on
Field Programmable Logic and Applications, pp 213-222.

[16] Wadden, Jack, Samira Khan, and Kevin Skadron. "Automata-to-Routing:
An Open-Source Toolchain for Design-Space Exploration of Spatial
Automata Processing Architectures." Field-Programmable Custom
Computing Machines (FCCM), 2017 IEEE 25th Annual International
Symposium on. IEEE, 2017.

[17] J. Wadden, et al. "ANMLzoo: a benchmark suite for exploring bottlenecks
in automata processing engines and architectures," Workload
Characterization (IISWC), 2016 IEEE International Symposium on.
IEEE, 2016.

[18] J. Wadden, K. Skadron. “VASim: An open virtual automata simulator for
automata processing application and architecture research,” Technical
Report CS2016-03, University of Virginia, 2016.

[19] Yuanwei Fang, Tung T. Hoang, Michela Becchi, Andrew A. Chien, "Fast
Support for Unstructured Data Processing: the Unified Automata
Processor," Proc. MICRO-48, 2015.

[20] M. Nourian, X. Wang, X. Yu, W. Feng and M. Becchi. 2017.
Demistifying Automata Processing: GPUs, FPGAs or Micron’s AP? In
Proceedings of ACM International Conference on Sup

[21] Wang, Ke, et al. "An overview of micron's automata processor," Proc.
Eleventh IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. ACM,
2016.ercomputing, Chicago, Illinois USA, June 2017 (ICS’17), 11 pages.

ANML
Benchmarks #STEs

Maximum
Logical
Fan-in

Maximum
Logical
Fan-out

Minimum
Hardware
Fan-out

Achieved
Brill 26668 4 4 42

Clam AM 49538 11 2 22
Levenshtein 2784 8 5 22
Hamming 11346 4 2 85

SPM 100500 3 2 22
EntityResolution 95136 28 5 200
RandomForest
(300f_15t_tree)

75340 2 2 7

PowerEN
(01000_00123)

40513 4 3 cannot
place

Snort
(after removing

special elements)

69029 19 19 cannot
place

Fermi 40783 2 2 27
DotStar

(after removing
special elements)

96438 2 2 cannot
place

Protomota
(after removing

special elements)

42061 3 9
(optimized)

cannot
place

