
GPU Acceleration of Near-Minimal Logic
Minimization

Ibrahim Savran
Computer Science and Engineering,

University of South Carolina, SC 29208
Email: savran@email.sc.edu

Jason D. Bakos
Computer Science and Engineering,

University of South Carolina, SC 29208
Email: jbakos@email.sc.edu

Abstract—In this paper, we describe a GPU-accelerated im-
plementation of a logic minimization heuristic based on the
near minimal approach. This algorithm has three key kernel
computations, and the current version of our implementation,
we adapted one of these kernels for GPU execution. In this
paper we report our results gained from using NVIDIA’s CUDA
development framework and an NVIDIA Tesla GPUs, achieving
a nearly 10X speedup as compared to a software implementation
executed on a Xeon 5500-series processor.

Index Terms—Logic Synthesis, GPU Computing, Heteroge-
neous Computing, SIMD.

I. INTRODUCTION

As VLSI integration levels increase, greater emphasis is
being placed on integrating complex special-purpose logic
within system-on-chip designs in order to support specific
applications such as real-time signal processing, graphics ac-
celeration, and high-speed packet-switched off-chip interfaces
[1]. Such designs often include large-scale logic subsystems.
In order to support design flows for such designs, there is a
need for high-performance logic synthesis tools.

A substantial portion of logic synthesis tools is to synthesize
combinational logic, where HDL is interpreted as boolean
functions, which must ultimately be minimized and converted
into a netlist of gates that meet timing and area constraints.

Logic optimization is divided into two-level and multi-
level logic minimization. In two-level minimization the com-
binational logic is represented in two level form, such as
sum-of-product form (SOP) or product-of-sum form (POS).
In order to reduce the degree of fan-in, logic described in
two-level form is converted into a multi-level form using an
interactive refinement algorithm. However, in this design flow,
performing minimization of the two-level logic is by far the
most computationally expensive step.

For minimizing two-level logic, there are several methods
that produce the optimal (or exact) solution [2-5]. Due to
the exponential nature of this problem, optimal solvers are
typically limited to functions with up to one hundred products
[2]. Therefore, most of the practical applications rely on
heuristic minimization methods [3-6].

While heuristic algorithms are much faster than the exact
ones, they are still extremely expensive to compute for mini-
mizing large-scale logic functions solving [3, 7]. Furthermore,
the heuristic algorithms display diversity in realizations. That

is, no single heuristic algorithm is consistently better than the
others for all logic functions. There are classes of functions
where one heuristic algorithm is better than the others [4].

Graphics Processor Units (GPUs) are well-suited for ex-
ecuting algorithms that exhibit a high-degree of data-level
parallelism and little control dependence [8]. This is because
GPUs are optimized to provide high throughput computation
and tolerate frequent long-latency accesses to memory.

While there is a substantial body of work for parallelizing
logic minimization heuristics for multi-processor and cluster-
based platforms [9,10], to the best of our knowledge, GPU
implementation of these algorithms has yet to be explored. In
this paper, we describe our preliminary efforts to explore this
area. The heuristic that we target is a cube-based approach,
which is of the latest generation of minimization algorithms
(map-based and table-based algorithms are the first two gen-
erations).

Using only a single previous-generation GPU, our current
implementation achieves a speedup of nearly 10X over single-
threaded software on a state-of-the-art processor (Xeon 5500).

II. BACKGROUND

In this section we briefly introduce the theoretical founda-
tions of logic minimization.

Definitions: Let f be a Boolean function f : Bn → B.
A variable is a symbol representing a single coordinate of
a Boolean space Bn (i.e x,y). A literal is a variable or its
negation, (e.g. x, ȳ, z). A cube is a conjunction of literals (e.g.
xy, xyz̄). A full cube is a don’t care assignment to every
variable.

If B ∈ {0, 1}, f is called completely specified Boolean
function. A completely specified function can be represented
by a set of cubes. This representation is known as a two-level
sum of product representation (SOP).

A cover is a set of cubes that potentially contain don’t care
variable assignments. A cover is minimum if it contains the
minimum possible number of cubes that cover all the terms
in the on-set.

An incompletely specified Boolean function f is defined
f : Bn → {0, 1,−}. In such formulations, the function
can be described has having an on set and off set, which
are enumerations of each variable assignments that yields an
output of true and an output of false, respectively. In this case,

Fig. 1. Expansion Algorithm

the non-specified inputs are assumed to be don’t cares. In other
words, the on-set, off-set, and don’t care-set are respectively F ,
R, D, where F : Bn → {1}, R : Bn → {0}, D : Bn → {−}.

The algorithm that we target in this paper performs on-set
expansion, a method that is based on one of the cube based
logic minimization algorithm [6].

Figure 1 depicts the top-level steps of our target algorithm.
The input is a logic function description that is specified by
its corresponding on-set and off-set. An example input for a
four-variable function is shown below:

ON − SET = {0 0 1−, 0 1 0 1 }
OFF − SET = {1 1 1 1 , 0 1 1 1 }
In the conversion step, a single cube of the on-set, c, is

selected, and a new set of cubes, BYPROD, is created by
comparing c to each member of the off-set, and generating a
cube where each variable is assigned to X if there is a match
and the value from the off-set if there is a mismatch. Following
the example above, if c = 0101, the resultant BYPROD set
would be { 1 − 1− ,− − 1−}.

In the cube absorption step, the size of BYPROD is reduced
by absorbing any members that are covered by other members.
In the example, the second cube, − − 1−, would absorb the
first cube, 1 − 1−, creating a new BYPROD = {− − 1−}.

In the coordinate subtraction step, each member of
BYPROD is subtracted from a full cube, − − −−. When
subtracting, each variable of the cube that is not a don’t care
is inverted. In the example, this would give − − 0−, which
covers c.

III. APPROACH

In our implementation, we adapted each of these three sub-
steps to the CUDA programming model. (see the algorithm of
Expansion Kernel)

We instance one thread for each member of the off-set
(organized as 32 threads per block). During the conversion
step, the BYPROD set is generated and stored in shared
memory.

During the absorption step, each member of the BYPROD
set must be compared against every other member. Recall that
the size of the BYPROD set is equal to the size of the off-
set, allowing each thread to associate itself with a member

of BYPROD. However, in order for each thread to compare
its member of BYPROD to every other thread’s member, the
threads will need to communicate across block boundaries. As
a result, before this comparison can be performed, a copy of
the BYPROD set must be stored to global device memory.
The comparison operation requires that each thread loop for
|BY PROD| iterations. The results of this comparison are
stored in shared memory.

For the coordinate subtraction step, the remaining elements
of the the BYPROD set are subtracted from a full cube, and
the results are stored back to device memory in order to send
it back to the host.

Algorithm: Expansion Kernel
1) ∀ cube ci of Set F

a) qj = Convert(ci,rj) /*BYPRODUCT Computa-
tion*/

b) B = B ∪ qj ;
/*Sub-kernel Absoption */

c) ∀ pk of set B where k 6= j do
i) if pk absorbs qj remove qj from the set B;
/*Sub-kernel Coordinate Subtraction*/

d) Do Coor. Subt on B from the cube {− − − . . .}
(full cube)

e) Select the first Prime Cube from the result set of
the last Sub-kernel function

IV. RESULTS

We compared the performance of our accelerated mini-
mization implementation to a single-threaded, CPU-only for
a sample set of benchmark input functions gathered from
Microelectronics Center of North Carolina (MCNC) [11]. The
benchmarks were selected by choosing the largest benchmarks
available.

Table 1 lists our results. The run times shown in the table
are measured from the launch of the top-level application to
completion, whichfor the accelerated implement, includes all
host-GPU communication, I/O, and host-side processing. All
runtimes are arithmetic means over ten runs.

Our test platform is a Dell PowerEdge R710 server contain-
ing a Xeon 5500-series processor, connected to a Tesla S1070

Benchmark Name GPU Time (in ms) x86 Time (in ms) Ratio # of On-set # of Of-set
1 alu4.pla 446.83 769.60 1.72 644 667
2 pdc.pla 4438.03 33981.05 7.65 520 6255
3 spla.pla 1703.78 11248.51 6.60 749 2947
4 apex4.pla 3347.80 21454.57 6.41 1731 2779
5 cordic.pla 898.96 4894.55 5.45 245 818
6 duke2.pla 296.18 522.35 1.76 914 1191
7 ex1010.pla 766.84 2008.13 2.62 742 1209
8 misex3.pla 1946.03 4852.24 2.49 1290 2027
9 table3.pla 5746.96 53693.34 9.34 643 6366
10 table5.pla 6072.71 59295.42 9.76 606 6985

TABLE I
TIME COMPARISON OF THE ALGORITHM

server via dual eight-lane PCIe cables. Note that we used only
one GPU for these tests.

As shown in the table, our speedups ranged from approx-
imately 2X to 10X depending on the benchmark tested. In
general, the performance achieved was a linear function of
the size of the off-set.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we described a GPU-accelerated implemen-
tation of a logic minimization heuristic. Our strategy for
parallelizing this algorithm was based on the observation that
the complexity of the three primary kernels of the algorithm
were related to the size of the off-set. As such, we associate
the off-set with the threads blocks.

This effort also demonstrates that GPUs can be effective for
accelerating non-arithmetic combinatorial algorithms, as op-
posed to numerical floating-point-based algorithms for which
GPUs are generally believed to be best suited.

We believe there is much room for improvement. In par-
ticular, the performance can be improved by implemented
the outermost loop, i.e. choosing each c from the on-set,
entirely on the GPU. This will greatly reduce the effect
of host-GPU communication and synchronization. Another
possible improvement is to utilize the GPU’s constant memory
for storing the off-set, since this set is invariant during the
course of this algorithm. Finally, because the algorithm mainly
consists of SIMD operations, it can potentially be implemented
in different ways. For example, instead of assigning every
thread to find a prime at a time, it is possible to create a
kernel for each cube in the set F. This idea is more amenable
for multi-GPU implementation.

REFERENCES

[1] J.E. Stine, J. Grad, I. Castellanos, J. Blank, V. Dave, M. Prakash, N. Iliev,
N. Jachimiec, ”A framework for high-level synthesis of system on chip
designs,” Proc. 2005 IEEE International Conference on Microelectronic
Systems Education, 2005 (MSE ’05), June 12-14, 2005, pp 67-68.

[2] T. Sasao, Worst and Best Irredundant Sum-of-Product Expressions, IEEE
Trans. Comp., Vol. 50, No 9, 2001, pp. 935-947.

[3] A. Mishchenco, T. Sasao, Large-Scale SOP minimization Using Decom-
position and Functional Properties, DAC 2003, pp 149-154.

[4] P.P. Tirumalai, J.T. Butler, Minimization Algorithms for Multiple-Valued
Programmable Logic Arrays, IEEE Transactions on Computers, Vol. 40,
No 2, 1991, pp.167-177.

[5] R.K. Brayton, G.D. Hachtel, C.T. McMullen and A.L. Sangiovanni-
Vincentelli, ”Logic Minimization Algorithms for VLSI Synthesis”
Boston, MA, Klewer Academic Publishers, 1984.

[6] S. Kahramanli, S. Gunes, S. Sahan, F. Basciftci, A new Method Based on
Cube Algebra for the Simplification of Logic Functions, Arabian Journal
for Sci. and Eng., Vol 32, No 1B, 2007, pp 101-114.

[7] P. Fier, H. Kubtov, ”Two-Level Boolean Minimizer BOOM-II,” Proc. 6th
Int. Workshop on Boolean Problems (IWSBP’04), Freiberg, Germany,
Sep. 23-24, 2004, pp 221-228.

[8] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, P.
Hanrahan. Brook for GPUs: Stream Computing on Graphics Hardware.
In SIGGRAPH, 2004.

[9] J. Bobba, A.M. Kumar, V. Kamakoti Parallel Partitioning Techniques for
Logic Minimization using Redundancy Identification, In: HiPC 2003.

[10] K. De, P. Banerjee, Parallel Logic Synthesis Using Partitioning, Interna-
tional Conference on Parallel Processing 1994, (ICPP 1994), Aug. 15-19
1994, Vol 3, pp 135-142.

[11] S. Yang, Logic synthesis and optimization benchmarks, ver. 3.0, Tech.
Rep., Microelectronics Center of North Carolina, 1991.

View publication statsView publication stats

https://www.researchgate.net/publication/228552702

