
GPU Acceleration of Pyrosequencing Noise Removal

Yang Gao
Department of Computer Science and Engineering

University of South Carolina
Columbia, SC, USA

Email: gao36@email.sc.edu

Jason D. Bakos
Department of Computer Science and Engineering

University of South Carolina
Columbia, SC, USA

Email: jbakos@cse.sc.edu

Abstract—AmpliconNoise [1], an updated version of Py-
ronoise [2], is a tool for removing noise from metagenomic
data recorded by a 454 pyrosequencer. AmpliconNoise has
shown to be effective in reducing overestimation of operational
taxonomic units (OTUs) and chimera detection. Amplicon-
Noise’s noise removal method relies on clustering a large set of
short sequences read by the sequencer. The DNA sequencing
algorithm requires the computation ofO(n2) pairwise distances
using a global sequence alignment method. Each sequence
consists of a few hundred base pairs and a typical dataset
contains 104 sequences, making the clustering computation
extremely expensive. In this paper we describe of GPU kernel
implementation of the most computationally expensive module
in the AmpliconNoise software package, SeqDist. With our
GPU workstation (Intel Core i7 980 @ 3.33GHz + 3 x NVIDIA
Tesla C2070) and a typical 454 dataset, our implementation
achieves a 8.6X (CUDA-SeqDist) speedup with a single GPU
when compared with a 12 MPI ranks of the original tools
running on the CPU alone. With three GPUs, we achieve a
2.1X further speedup over the single GPU version, yielding
a total speedup of 18.3X. We measure the throughput of our
kernel to be 1.4 giga floating-point cell updates per second
(GFCUPS) with a single GPU and 2.9 GFCUPS with 3 GPUs,
where GFCUPS refers to the unique method by which the score
matrix must be updated in the specialized alignment algorithm
used in AmpliconNoise.

Keywords-GPU Computing; Metagenomics; Heterogeneous
Computing; AmpliconNoise; Pyronoise; Sequence Alignment;
Needleman-Wunsch; Smith-Waterman; GPU; CUDA; MPI;
Short Reads

I. INTRODUCTION

Since the first Compute Unified Device Architecture
(CUDA)-compatible GPU released by NVIDIA in 2008,
GPU computing has become widely adopted by the sci-
entific computing community. Modern GPUs are generally
organized as a “many-core architecture”, where each core
consists of a single instruction multiple data (SIMD) ar-
chitecture having 32 lanes. GPUs also generally have a
memory system with higher bandwidth than same-generation
CPUs(see Table IV). As a such, GPUs are generally better
suited than CPUs for data-parallel kernels.
There has been recent interest in processing and clus-

tering datasets generated by the Roche’s 454 sequencing
platform [3][4][5][6][7] [8][2][1]. Among these algorithms,
AmpliconNoise is of particular interest, as shown in recent

metagenomics literature where AmpliconNoise is used to de-
noise the 454 data in order to reduce the overestimation of
the number of unique species implied by the data, a common
problem in metagenomic sequencing [9][10] [11][12][13]
[14][15][16][17].
The computational cost of 454 de-noising is an obstacle

for metagenomics practitioners. To address this problem, the
original AmpliconNoise software has been parallelized using
the Message Passing Interface (MPI) programming model.
Due to the algorithm complexity, however, AmpliconNoise
still requires a substantial amount of computing resouce to
process a full size dataset generated by a one-time operation
of the 454 sequencing equipment, even when run on a
substantial parallel computer system.
The computational kernel of AmpliconNoise is the

Needleman-Wunsch algorithm [18] to compute the pairwise
distances among a large set of short sequences. There are
several examples in the literature that describe GPU accel-
erated local and global sequence alignment algorithms such
as Needleman-Wunsch, Smith-Waterman [19], and BLAST
[20]. However, the emphasis of these efforts is on local
sequence alignment for genomic database search, in which
a relatively short sequence is aligned against a very long
sequence.
Manavski provided the seminal work in accelerating

Smith-Waterman using CUDA [21]. This early work has
been improved upon in the development of more recent and
popular libraries such as CUDASW++ [22]. More recently,
Razmyslovich has developed an OpenCL implementation of
Smith-Waterman [23] that achieves three times the perfor-
mance of CUDASW++ 2.0[24] in some situations.
The alignment algorithm used in AmpliconNoise differs

from traditional sequence alignment in that it requires the
use of double precision floating point operations when
performing alignment score calculation. As a result, the
traditional metric for defining alignment throughput, “Cell
Updates Per Second (CUPS)”, is not suitable because it is
based on integer calculation and thus cannot be directly used
to compare the performance of AmpliconNoise alignments.
In this paper we propose a new throughput metric that we
call “Floating-point Cell Updates Per Second (FCUPS)” for
comparing the performance between different implementa-

2012 Symposium on Application Accelerators in High Performance Computing

CFP1225P-ART/12 $26.00 © 2012 IEEE

DOI 10.1109/SAAHPC.2012.15

94

tions of the alignment method. We do this to discourage
direct performances comparisons between our GPU kernel
implementation and those that use integer score calculations.
In addition, unlike CUDASW++, which employs a perfor-
mance optimization in which the move matrix is discarded,
in the AmpliconNoise alignment this matrix must be retained
in order to calculate the “normalized alignment distance”,
required for AmpliconNoise’s final distance calculation.
The remainder of the paper is organized as follows.

Section 2 describes the usage of the Needleman-Wunsch
algorithm used by AmpliconNoise. Section 3 describes the
optimizations we applied to improve the performance of
the kernel. Section 4 describes our implementation. Section
5 lists our performance results. Section 6 summarizes this
work.

II. NEEDLEMAN-WUNSCH

There are four major components in AmpliconNoise
which have been parallelized by MPI, PyroDist, Pyronoise,
SeqDist, and SeqNoise. SeqDist is used to compute the
distances between each pair of sequence and is the most
computationally demanding of the four. Within SeqDist, the
pairwise distance computation consumes nearly all of the
total execution time (see Table I).
In SeqDist, in order to compute the pairwise distance

among the sequences, an input dataset with n sequences will
perform a Needleman-Wunsch alignment n×(n−1)

2 times to
construct matrices. If the length of each sequence is m, the
final computation complexity is O(n2m2). m is typically
several hundred.
The Needleman-Wunsch algorithm is illustrated as below:

For two input sequences A and B, we compute

H(i, j) = max

⎧⎨
⎩

H(i− 1, j − 1) + S(A[i], B[j])
H(i− 1, j)− d
H(i, j − 1)− d

(1)

M(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

diag if H(i, j) = H(i− 1, j − 1)
+S(A[i], B[j])

left if H(i, j) = H(i− 1, j)− d
up if H(i, j) = H(i, j − 1)− d

(2)

where H(i, j) is the score matrix. S() is the similarity score
resulting from comparing element A[i] and element B[j]
obtained from a substitution matrix, etc. d is the penalty for a
single gap. S() and d are given by the 454 sequencer depen-
dent data file (Lookup.dat). The penalty values themselves
(the content of the table) are represented as floating-point
values. In order to differentiate minor variations between
flows, the authors of AmpliconNoise choose to use double
precision floating point numbers to perform the computation.
In (2), M(i, j) is the move matrix. The value in each cell
is decided by the selection results from (1).
AmpliconNoise isn’t concerned with determining the ex-

act alignment for each pair of sequences, but it does use

Figure 1. Using N-W method to compute the distance between two
sequences.

the move matrix to determine the total alignment length
to normalize the alignment score. To do this, the score is
divided with length of the alignment, which is calculated by
tracing back the move matrix.
Figure 1 shows an example N-W computation in Ampli-

conNoise. In this example, an example sequence, sequence
1, undergoes three edits to produce a second sequence,
sequence 2. These sequences are then aligned. The final
alignment score is taken from the lower-right cell of the
resultant score matrix. The resultant move matrix is depicted
in the figure, and shows how characters present in sequence
1 but not in sequence 2 result in moves to the left, while
characters present in sequence 2 but not in sequence 1 result
in moves up. Move matrices having more moves to the left
or up produce longer alignments. In this example, the final
score is divided by 13 moves to compute the normalized
score.
We summarize the Needleman-Wunsch algorithm in Am-

pliconNoise as the following:

• It is used to perform pairwise alignment among a large
set of short sequences.

• The substitution matrix contains double-precision float-
ing point values and thus requires double-precision

95

Table I
N-W AND AMPLICONNOISE TIME CONSUMPTION

�
�
�
�
�
�
�
�
�

TOOLS
DATASET

Random11000 NOTES

PyroDist 1.8%
Pyronoise 10.4%

SeqDist
�
�
�
�
�
�
��75.8%

75.9%

The upper value
is for N-W methods
and the lower value

is the total.
SeqNoise 2.7%

Other 9.1%
This contains

all the non-MPI
programs

The times are shown as a persentage of the total execution time. Ran-
dom11000 is a random subset of 11000 flows chosen from a larger 454
dataset.

addition to compute the score, double-precision division
to normalize the score, and double precision compar-
isons when comparing scores.

• A traceback procedure is needed to generate the nor-
malized distance between the two input sequences.

III. METHODS

A. Hot Spot

Table I shows profiling results for the 12-thread CPU exe-
cution of the original AmpliconNoise software. We profiled
the three primary modules of AmpliconNoise: PyroDist,
Pyronoise, SeqDist, and SeqNoise. The time for non-MPI
code are summed up in the line “others”. For this test we
used a 11000-flow dataset that contains a subset of flows
from an actual Roche Genome Sequencer FLX titanium-
based run. For SeqDist, the execution time required for the
alignments is shown above the total execution time. These
results show that the alignment is the computational kernel.
Note that the MPI version of Pyronoise, which performs an
initial clustering of the sequences, consumes 10.4% which
will be the focus of future work.

B. Matrix Construction

In general, tuning GPU kernel code requires that the
programmer apply code transformations to maximize the
utilization of GPU resources and memory bandwidth. A key
concern for achieving both of these goals is to maximize the
number of active threads.
Existing Smith-Waterman and Needleman-Wunsch align-

ment kernels (including CUDASW++) use a strategy where
they use a large set of threads to generate each diagonal
in a single score and movement matrix. This is depicted in
Figure 2(a). This is possible since cells along the diagonal
can be computed independently from one another. This is
an effective strategy for kernels that perform one alignment
at a time, since many threads can be utilized during the
alignment.
There are two drawbacks to this approach. When assign-

ing one thread per cell in the matrix diagonal, in order to

Figure 2. Two Parallel Strategy and Improvement. In (a), a thread block
of threads are used to construct a single matrix while in (b) only one thread
is assigned to the whole matrix.

access memory in a coalesced way the matrices must be
organized in a diagonal-major order, as opposed to row or
column major order. Organizing the matrix in this way adds
overhead for translating row and column pairs into memory
addresses. In addition, there are several “corner cases” that
must considered that require additional conditional execu-
tion paths (i.e. if-statements) that cause branch divergences
amongst the threads and degrading performance.
Both of these issues also lead to higher register usage

per thread that limits the kernel’s occupancy, or the number
of threads that can execute simultaneously on each of the
GPU’s processor cores. Since AmpliconNoise performs a
large number of short alignments, we observe that a more
effective strategy is to assign one thread to each alignment
operation and to perform a large set of alignments in parallel.
As compared to the more traditional approach of computing
the score matrix diagonals in parallel, this technique leads
to fewer divergent branches and allows for lower register
usage allowing more threads to be invoked.
CUDASW++, unlike Razmyslovich’s implementation,

provides an option for performing multiple alignments in
parallel on the GPU (see Figure 2(b)) but does not provide
traceback capability for determining the length of the align-
ment. Razmyslovich’s work, on the other hand, does provide
an option for performing traceback, but when enabled, the
overall performance is reduced by a factor of 10 as compared
to when traceback is not enabled.

C. Trace Back

In AmpliconNoise alignments, the traceback procedure is
needed to compute the normalized distance. Unlike matrix
construction, the control flow of the trace back procedure
is unpredictable and data dependent. As such, when tracing
back, the threads within one thread block may have different
control paths relative to each other. This leads to uncoalesced
memory access and divergent branches. Both of these behav-
iors reduce GPU performance.

96

Figure 3. 3-stage GPU stream and CPU co-working pipeline. Under
this configuration, two blocks of device memory(dmem) are used for
GPU computing and GPU copy engine. In the host side, in order to
support the GPU copy and CPU computing at the same, 4 blocks of host
memory(hmem) is necessary.

One approach for solving this problem is to use a pipeline,
in which the GPU performs the current round of matrix
construction while the CPU performs the traceback of the
move matrices generated in previous round. This approach
is shown in Figure 3.
In this case, the CUDA “stream” execution model can

support GPU calculation and memory copy back between
GPU and host simultaneously. Despite the fact that the
memory bandwidth over PCIe (around 1.5 GB/second in
our system) is significantly slower than the GPU’s onboard
memory, when considering the complexity of the matrix
construction (O(n2) versus that of the trace back O(n)), we
have found that the execution time required by each pipeline
stage is roughly balanced.
However, this method carries with it substantial memory

overhead. In this technique, GPU memory must be instanced
for two streams (one stream that the GPU is processing and
another being transferred to the CPU). In other words, since
the CPU is receiving the GPU results while the GPU is
processing the next batch of data, the GPU must always
contain two complete blocks of data. A further complication
is that the CPU must contain both a host and a device version
of both data blocks which are for trace back and for data
transfer. As such, the CPU will require four instances of the
movement matrix.
As shown in Table IV, one of our workstation has 4 GPUs

with 4 GB memory each and 16 GB of host memory. For a
multiple GPU computation, the memory requirement is even
greater and a potential limiter for GPU occupancy.
In order to overcome this problem, we perform the

traceback on the GPU. Our results show that the traceback
procedure has little effect on execution time, but allows more
thread blocks to be invoked.

IV. IMPLEMENTATION

In this section we discuss five specific optimizations in
our kernel. Specifically, these include the following:

• task parallelization,
• grid size optimization,

Figure 4. Group assignment and memory arrangement. The ticked cell
means we should do the distance computation between the two groups, and
for dash we do nothing. The distances between the flows within each group
are also computed.

• use of shared memory,
• register usage optimization, and
• scaling to multiple GPUs

A. Task Parallelization

In AmpliconNoise, the Needleman-Wunsch kernel is
launched for sequence to sequence alignment. In order to
take advantage of the GPU’s parallel computing ability,
however, we divide the sequences into groups where each
group has a predefined number of sequences. Instead of
computing the distance one-by-one, we launch a thread grid
to compute all the possible distances between the sequences
from each pair of groups.
As illustrated in the Methods Section, a single thread

performs the construction of one score and move matrix as
shown in Figure 4. In order to achieve coalesced memory
access of a block of threads, we interleave each group of
score and movement matrices, where the group size is 32
to match the warp size. As such, the addresses from 0 to
31 store the first values of 32 matrices; the next block of
32 addresses store the second values of each of 32 matrices
and so forth.

B. Memory Requirement

454 flows translate into sequences that are typically less
than 800 characters. A single thread will thus require at
most 800 × 800 bytes to construct a move matrix, using a
single byte for each direction. Here we don’t consider the
memory cost from the score matrix, because the kernel only
maintains two rows of this matrix during operation. Thus,
given n 32-thread blocks, the memory usage for the move
matrices has an upper bound of 800×800×32×n≈ 19.5n
MB. Since each of our test GPUs has 4 GB we are limited
to 192 32-thread blocks, requiring about 3.8 GB.

97

C. Grid Size

Higher register usage limits thread occupancy, so in
order to maximize the number of threads it is necessary to
minimize the number of registers required by each thread.
Our kernel requires 40 registers/thread. A block containing
less than two warps is assigned registers as if it had two
warps (two warps per block is minimum). This causes a
32-thread block to require 2 × 32 × 40 = 2560 registers.
Since there are 16384 total registers, we can have at most
16384/2560 = 6 blocks, or 6 warps per GPU processor,
which gives 32 × 6 = 192 threads per GPU processor.
Since the maximum number of threads per GPU processor
is 1024, this results in an occupancy of 18.8%. Assigning
two warps per block uses the same number of registers
and doubles the occupancy to 12 warps per processor, or
32×12/1024 = 37.5%, nominally resulting in a speedup of
2. If we continue to increase the warps per block to 3 or 4,
the occupancy stays at 12 warps per block. At 5 warps per
block, only 2 blocks can be mapped, reducing the occupancy
to 10 warps.
Our Tesla T10 GPU has 30 multiprocessors, giving the

capacity to schedule 360 warps, or 180 blocks at 2 warps per
block. As shown in Table 2, we tested various combinations
of one, two, and three warps per block with different
numbers of blocks (5, 6 and 7 groups of 32). Interestingly,
the 160 block configuration achieved the best execution
time, memory throughput, and instruction issue rate. The
192 block version achieves better memory throughput but
higher execution time.

D. Shared Memory

Using shared memory is a common optimization for
increasing the performance of memory bandwidth-bound
kernels. Each SM contains 16 KB of shared memory. The
number of concurrent threads in our implementation is
BlocksSM × ThreadsBLOCK = 5× 64 = 320 (5 blocks 2
warp configuration), providing 51 bytes of available shared
memory per thread. We copied the substitution matrix into
shared memory to lower the number of global loads and
stores and achieve lower execution time.

E. Register Usage Optimization

According to the CUDA occupancy calculator, in order
to achieve higher occupancy, the number of registers would
need to be reduced from 40 registers/thread to 32. Register
allocation in the CUDA compiler chain is performed by
ptxas . ptxas supports a stack for spilling registers to local
memory through the use of the “-maxregcount” compiler
option to limit register usage.
As shown in Table III, when we limit the number of

registers per thread to 32, the SM occupancy rises from
0.375 to 0.5. This causes the automatic allocation of 16
bytes local memory per thread. Local memory is a part of the
off chip device memory and has a high access time. At 32

C2070x3

C2070x1

T10x4

T10x1

CPUx12

CPUx1

SeqDist 50 100 150 200

5 10 15 20 25 30

Speed Up
1 CPU thread baseline(x)

Performance Comparison

Speed Up
12 CPU thread baseline(x)

 18.3x (128x)

 8.6x (60x)

 16.0x (112x)

 5.1x (36x)

 1x (7x)

 0.14x (1x)

Figure 5. Performance Comparison over C005. Multiple CPU configura-
tion is based on MPI nodes. CPU used in this test is Intel Core i7 980.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

8 16 3248 64 96 128 256(ideal)

50

100

150

200

250

T
hr

ou
gh

pu
t

(G
F

C
U

P
s)

S
pe

ed
U

p
O

ve
r

1
N

od
e

(x
)

Number of Nodes for MPI

CUDA-SeqDist Benchmark

CPU-MPI

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

8 16 3248 64 96 128 256(ideal)

50

100

150

200

250

T
hr

ou
gh

pu
t

(G
F

C
U

P
s)

S
pe

ed
U

p
O

ve
r

1
N

od
e

(x
)

Number of Nodes for MPI

CUDA-SeqDist Benchmark

T10x1
T10x4

C2070x1
C2070x3

Figure 6. CUDA-FDist Benchmark:MPI vs GPU. CPU used in this test
is Intel X5660 .Notice that there is performance difference with Intel Core
i7 980 shown in Figure 5.

registers per thread, we can increase the number warps per
SM from 12 to 16, allowing us to launch 480 warps(240
blocks) simultaneously, however this would require more
device memory than is available.
Therefore, as shown in III, we actually take 192 blocks

the whole card which has shown to provide no advantage
over the 160 blocks configuration when processing the 640
sequences dataset.
However, once we scale the question size to 1280 and

2560 sequences, the high occupancy overcomes the penalty
from extra memory accessing.

F. Multi-GPU Implementation

Since each individual alignment is independent, the host
can assign each GPU a workload consisting of a subset of
the alignments in order to parallelize SeqDist across multiple
GPUs. In our multi-GPU implementation, we divide the
workload across each GPU using MPI.

98

Table II
CUDA-SEQDIST PERFORMANCE

Blocks ×

Threads
Warps

per Block

Streaming
Multi-

processors
(SM)

Ideal Warps
per SM4

Actual Warps
per SM5

Processor
Occupancy

Run
Time
(sec)

Memory
Throughput

(GB/s)

Instr-
uction

Issue Rate
Notes

32× 32 1 30 6 1.1 0.188 32.9 17.8 0.18
192× 32 1 30 6 6.4 0.188 15.5 35.0 0.24
192× 64 2 30 12 12.8 0.375 12.7 44.8 0.34 6 BG1

96× 96 3 30 9 9.6 0.281 14.5 28.8 0.31
160× 64 2 30 12 10.7 0.375 11.3 51.7 0.34 5 BG
224× 64 2 30 12 14.5 0.375 12.2 40.0 0.31 7 BG
160× 64 2 30 12 10.7 0.375 13.6 44.5 0.28 NS2

160× 64 2 30 12 10.7 0.375 11.3 51.7 0.34 NT3

Here we choose a dataset which contains 640 sequences to make a trade off to meet both the computation complexity and time efficient needs. All the
results are base on CUDA ComputeProfiler ver. 4.0
1 BG stands for block group which is times of 32
2 NS stands for no-share memory optimization
3 NT stands for no-traceback test
4 This number is reflected in the occupancy calculator which has direct relationship with the SM occupancy.
5 This number is calculated from the total warps divided by number of SMs. Though technically it’s not accurate due to the fraction part, we take this
index to reflect the real occupancy.

Table III
REGISTER USAGE OPTIMIZATION

Blocks ×

Threads
Warps

per Block

Streaming
Multi-

processors
(SM)

Ideal Warps
per SM

Actual Warps
per SM

Processor
Occupancy

Run
Time
(sec)

Kernel
Local

Memory
(Bytes)

Notes

160× 64 2 30 12 10.7 0.375 43.0 0 SEQ12801

192× 64 2 30 16 12.8 0.5 42.6 16 SEQ12801

160× 64 2 30 12 10.7 0.375 164.7 0 SEQ25602

192× 64 2 30 16 12.8 0.5 162.6 16 SEQ25602
1 The dataset used in these tests is of length 1280 sequences
2 The dataset used in these tests is of length 2560 sequences

Table IV
TECHNICAL SPECIFICATIONS OF HARDWARE PLATFORM

CPU
Core i7
980

Xeon
L5520

Xeon
X5660

Tesla
T10

Tesla
C2070 GPU

Architecture Sandy Bridge Nehalem Nehalem GT200 Fermi Architecture
CPUs 1 2 1-191 4 3 GPUs
Cores/CPU 6 4 6 30 14 MP2/GPU
Threads/core 2 2 2 8 32 Cores/MP
Clock rate (GHz) 3.33 2.26 2.8 1.44 1.15 Clock rate (GHz)
Memory Size(GB) 12 16 24 4 6 Memory Size(GB)
Memory Bandwidth(GB/s) 25.6 25.6 32 102 144 Memory Bandwidth(GB/s)

1 MPI connected cluster.
2 Multiprocessor.

V. RESULTS AND DISCUSSION

A. Test Platform

The working platform is shown in Table IV. Our platform
for development and initial design exploration is a Dell R710
server with a Tesla S1070 GPU 1U system. The S1070
contains 4 Tesla T10 GPUs having the GT200 architecture.
In order to gather baseline results from a more recent
CPU and GPU architectures we also ran tests on another
workstation with Core i7 980 CPU and 3 C2070 (Fermi
architecture) GPU. For our baseline cluster results, we ran

tests on a 19 node Nehalem cluster that supports up to 128
concurrent MPI ranks. All of our test datasets are extracted
from a microbial community sample of lake environment.

B. Results: SandyBridge CPU vs. GPU

Figure 5 shows the performance when AmpliconNoise
processes a subset of a real 454 dataset on multiple plat-
forms. We normalized all results to the performance of a
single SeqDist rank running on an Intel SandyBridge CPU.
A single T10 GPU achieves 36X speedup and one C2070
GPU achieves 60X speedup. Four T10 GPUs and three

99

C2070 GPUs achieve 112X and 128X respectively.

C. Benchmark Results:MPI vs. GPU

We also ran tests on a small cluster consisting of 19 nodes
of Nehalem Xeon Extreme Edition CPUs with 6 cores each
(see Table IV). This cluster bears a 36 port Voltaire 4036
QDR 40Gb/s infiniband switch and each computer has an
onboard Mellanox ConnectX VPI (MT26438) QDR 40Gb/s
inifiniband adapter with OFED middleware and driver stack
installed. We ran performance tests of n nodes x m ranks
per node using the following configurations: 2 × 4, 4 × 4,
8× 4, 12× 4, 16× 4, 16× 6, and 16× 8 on that platform.
Since we share the cluster with other users, we had to take
these configurations in order to get our task scheduled as
soon as possible.
We use the throughput index FCUPS as the Y-axis. We

choose to down-sample the original dataset for test con-
venience. We also tested the CUDA-SeqDist with different
GPU configurations and put the results into the CPU-MPI
line based on its GFCUPs.
Our test cluster doesn’t support a full allocation of 256

ranks, so we extrapolate the MPI performance linearly
beyond the maximum test scale of 128, although this linear
extrapolation for 256 nodes should be taken as an upper
bound. Also, since the cluster is shared with other users,
our results are averaged over ten runs.
The test results is shown in Figure 6 in which we could

find that one T10 GPU is comparable to 64 ranks of Xeon
Extreme Edition processors, while four T10 GPU cards
outperforms the full capacity of the cluster. A single C2070
GPU achieves nearly 1.5 GFCUPS, which is equivalent to
about a 90 node MPI cluster. With three C2070 GPUs we
achieve a further speedup of 1.9.

VI. CONCLUSION

In this paper, we presented an efficient GPU implementa-
tion of AmpliconNoise. Combined with AmpliconNoise’s
native support for MPI, our implementation can also be
executed on GPU equipped clusters to achieve extremely
high performance.
In this paper we described each optimization and its

resultant performance benefit or penalty. These techniques
and experiences may be helpful as a general methodology
for others who are working to optimize other codes for GPU
execution.

ACKNOWLEDGMENT

We would like to acknowledge the ACM-Chem cluster at
Interdisciplinary Mathematics Institute (IMI) of University
of South Carolina for the usage of their cluster computing
utility. And with support from Dr. Robert C. Sharpley(IMI)
and Dr. Colin Bennett(Math Department of University of
South Carolina), this project became part of NSF EPSCoR.
We also want to thank the staffs of IMI for their the generous
hardware and software support.

REFERENCES

[1] C. Quince, A. Lanzen, R. Davenport, and P. Turnbaugh, “Re-
moving noise from pyrosequenced amplicons,” Bmc Bioinfor-
matics, vol. 12, no. 1, p. 38, 2011.

[2] C. Quince, A. Lanzn, T. Curtis, R. Davenport, N. Hall,
I. Head, L. Read, and W. Sloan, “Accurate determination of
microbial diversity from 454 pyrosequencing data,” nature
methods, vol. 6, no. 9, pp. 639–641, 2009.

[3] S. Kumar, T. Carlsen, B. Mevik, P. Enger, R. Blaalid,
K. Shalchian-Tabrizi, and H. Kauserud, “CLOTU: an online
pipeline for processing and clustering of 454 amplicon reads
into OTUs followed by taxonomic annotation,” BMC bioin-
formatics, vol. 12, no. 1, p. 182, 2011.

[4] J. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai, R. Farris,
A. Kulam-Syed-Mohideen, D. McGarrell, T. Marsh, G. Gar-
rity et al., “The ribosomal database project: improved align-
ments and new tools for rRNA analysis,” Nucleic acids
research, vol. 37, no. suppl 1, pp. D141–D145, 2009.

[5] H. Amber, R. Sean, M. Timothy, L. Bertram, and E. Jonathan,
“Introducing WATERS: a workflow for the alignment, taxon-
omy, and ecology of ribosomal sequences,” BMC Bioinfor-
matics, vol. 11, 2010.

[6] P. Ram, N. Viola, and S. Christian, “CANGS: a user-friendly
utility for processing and analyzing 454 GS-FLX data in
biodiversity studies,” BMC Research Notes, vol. 3, 2010.

[7] F. Juan, L. Antonio, F. No, C. Francisco, P. Guillermo, and
C. Gonzalo, “SeqTrim: a high-throughput pipeline for pre-
processing any type of sequence read,” BMC Bioinformatics,
vol. 11, 2010.

[8] J. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger,
F. Bushman, E. Costello, N. Fierer, A. Pea, J. Goodrich,
J. Gordon et al., “QIIME allows analysis of high-throughput
community sequencing data,” Nature methods, vol. 7, no. 5,
pp. 335–336, 2010.

[9] E. Hall, K. Besemer, L. Kohl, C. Preiler, K. Riedel, T. Schnei-
der, W. Wanek, and T. Battin, “Effects of resource chem-
istry on the composition and function of stream hyporheic
biofilms,” Frontiers in Microbiology, vol. 3, 2012.

[10] L. Tranvik and T. Battin, “Unraveling assembly of stream
biofilm communities,” ISME Journal, vol. 1, p. 10, 2012.

[11] P. Kumar, M. Brooker, S. Dowd, and T. Camerlengo, “Target
region selection is a critical determinant of community fin-
gerprints generated by 16S pyrosequencing,” PloS one, vol. 6,
no. 6, p. e20956, 2011.

[12] A. Lanzén, S. Jørgensen, M. Bengtsson, I. Jonassen,
L. Øvreåas, and T. Urich, “Exploring the composition and di-
versity of microbial communities at the jan mayen hydrother-
mal vent field using RNA and DNA,” FEMS microbiology
ecology, 2011.

[13] R. Henrik Nilsson, L. Tedersoo, B. Lindahl, R. Kjller,
T. Carlsen, C. Quince, K. Abarenkov, T. Pennanen, J. Stenlid,
T. Bruns et al., “Towards standardization of the description
and publication of next-generation sequencing datasets of
fungal communities,” New Phytologist, 2011.

100

[14] G. Wang, S. Sherrill-Mix, K. Chang, C. Quince, and F. Bush-
man, “Hepatitis c virus transmission bottlenecks analyzed by
deep sequencing,” Journal of virology, vol. 84, no. 12, p.
6218, 2010.

[15] D. Knights, E. Costello, and R. Knight, “Supervised classi-
fication of human microbiota,” FEMS microbiology reviews,
2011.

[16] J. Bahl, M. Lau, G. Smith, D. Vijaykrishna, S. Cary, D. Lacap,
C. Lee, R. Papke, K. Warren-Rhodes, F. Wong et al., “Ancient
origins determine global biogeography of hot and cold desert
cyanobacteria,” Nature communications, vol. 2, p. 163, 2011.

[17] A. Gobet, C. Quince, and A. Ramette, “Multivariate cutoff
level analysis (MultiCoLA) of large community data sets,”
Nucleic acids research, vol. 38, no. 15, pp. e155–e155, 2010.

[18] S. Needleman and C. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of
two proteins,” Journal of molecular biology, vol. 48, no. 3,
pp. 443–453, 1970.

[19] T. Smith, M. Waterman et al., “Identification of common
molecular subsequences,” J. mol. Biol, vol. 147, no. 1, pp.
195–197, 1981.

[20] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman,
“Basic local alignment search tool,” Journal of molecular
biology, vol. 215, no. 3, pp. 403–410, 1990.

[21] S. Manavski and G. Valle, “CUDA compatible GPU cards as
efficient hardware accelerators for Smith-Waterman sequence
alignment,” BMC bioinformatics, vol. 9, no. Suppl 2, p. S10,
2008.

[22] Y. Liu, D. Maskell, and B. Schmidt, “CUDASW++: optimiz-
ing Smith-Waterman sequence database searches for CUDA-
enabled graphics processing units,” BMC Research Notes,
vol. 2, no. 1, p. 73, 2009.

[23] D. Razmyslovich, G. Marcus, M. Gipp, M. Zapatka, and
A. Szillus, “Implementation of Smith-Waterman algorithm
in OpenCL for GPUs,” in Parallel and Distributed Methods
in Verification, 2010 Ninth International Workshop on, and
High Performance Computational Systems Biology, Second
International Workshop on, 2010, pp. 48–56.

[24] Y. Liu, B. Schmidt, and D. Maskell, “CUDASW++ 2.0: en-
hanced Smith-Waterman protein database search on CUDA-
enabled GPUs based on SIMT and virtualized SIMD abstrac-
tions,” BMC Research Notes, vol. 3, no. 1, p. 93, 2010.

101

