
Lightweight Error Correction Coding for
System-Level Interconnects

Jason D. Bakos, Member, IEEE, Donald M. Chiarulli, Member, IEEE, and

Steven P. Levitan, Senior Member, IEEE

Abstract—“Lightweight Hierarchical Error Control Coding (LHECC)” is a new class of nonlinear block codes that is designed to

increase noise immunity and decrease error rate for high-performance chip-to-chip and on-chip interconnects. LHECC is designed

such that its corresponding encoder and decoder logic may be tightly integrated into compact, high-speed, and low-latency I/O

interfaces. LHECC operates over a new channel technology called Multi-Bit Differential Signaling (MBDS). MBDS channels utilize a

physical-layer channel code called “N choose M (nCm)” encoding, where each channel is restricted to a symbol set such that half of the

bits in each symbol are set to one. These symbol sets have properties that are utilized by LHECC to achieve error correction capability

while requiring low or zero relative information overhead. In addition, these codes may be designed such that the latency and size of

the corresponding decoders are tightly bounded. The effectiveness of these codes is demonstrated by modeling error behavior of

MBDS interconnects over a range of transmission rates and noise characteristics.

Index Terms—Interconnections (subsystems), interconnection architectures, code design, coding tools and techniques, coding and

information theory, error control codes.

Ç

1 INTRODUCTION

THE semiconductor industry continues to improve fabri-
cation technology by shrinking minimum feature size

and oxide thickness, allowing for a continual increase in logic
speed and integration density. The microprocessor industry
sustains its growth in raw computational power by develop-
ing increasingly aggressive microarchitectures that are
tailored to take advantage of these new speeds and densities.
However, the relative performance of system-level inter-
connects has, for the most part, remained stagnant relative to
the capabilities of the corresponding fabrication technology.
In fact, advances in semiconductor fabrication technology
have, in many ways, created new challenges for implement-
ing correspondingly fast interconnect technologies. For
example, decreases in supply voltage have narrowed signal
margins, growth in integration density has increased relative
levels of noise that affect the power supply and substrate,
finer wire pitches have increased the effect of crosstalk of
parallel signal conductors, increasing power requirements
require relative increases in the portion of I/O pads reserved
for the power supply (leading to I/O-constrained designs),
and wire delay has become increasingly significant relative to
clock frequency.

In this paper, we propose the use of error correction
coding to increase the end-to-end throughput of off-chip
interconnects. This technique exploits the new capacities for

logic speed and integration to couple encoding and
decoding logic to inter and inner-chip interfaces. Tradition-
ally, error correction codes have not been a viable approach
for such channels due to the high logic complexity and high
latency required for decoding, preventing decoder integra-
tion into existing chips and requiring unacceptable latency.
As a result, current research in high-performance short-haul
channels has primarily focused on analog approaches (as
opposed to information-theoretic approaches) such as
signal preemphasis and equalization.

Our technique is designed to take advantage of a new
channel technology which itself is an extension of current-
mode differential signaling. Current-mode differential
signaling technology offers robust noise immunity at the
physical layer and has become an attractive solution for
high-performance, serialized system-level interconnects. As
such, the industry has adopted differential signaling for
applications that require high-throughput off-chip inter-
connects. For example, differential signaling is used for
such standards as LVDS [2], Xilinx’s Multi-Gigabit Trans-
ceivers [9], the DVI digital display interface [10], and the
physical-layer of network architectures such as HyperTran-
sport and RapidIO [11]. There has also been work in
adapting differential signaling to on-chip interconnects [3].
However, differential signaling is expensive because it
requires two physical conductors for each bit of intercon-
nect capacity, along with high static power consumption. In
many cases, this limits the use of differential signaling to
bit-serial interconnects. Multi-Bit Differential Signaling
(MBDS) [1], [13], [14] has emerged as a more efficient
alternative to differential signaling because it achieves
equivalent noise immunity while requiring lower I/O and
power resources. Due to the unique structure of the MBDS
driver circuit and termination network, MBDS channels
require that data transmitted across the channel be encoded
with a physical-layer channel code called “N choose M

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 3, MARCH 2007 289

. J.D. Bakos is with the Department of Computer Science and Engineering,
University of South Carolina, Columbia, SC 29208.
E-mail: jbakos@cse.sc.edu.

. D.M. Chiarulli is with the Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15260.

. S.P. Levitan is with the Department of Electrical and Computer
Engineering, University of Pittsburgh, Pittsburgh, PA 15261.

Manuscript received 23 Nov. 2005; revised 10 May 2006; accepted 10 Aug.
2006; published online 22 Jan. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0414-1105.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

(nCm)” encoding.1 In an nCm physical-layer code, data is
restricted to a predefined binary symbol set where a
channel of arbitrary physical width carries symbols where
half the bits are binary-1 values. This physical code contains
inherent data redundancy that can be exploited to gain
additional encoding benefits.

This paper describes Lightweight Hierarchical Error
Control Coding (LHECC). LHECC endows MBDS-based
interconnects with error correction capability while requir-
ing low information and implementation overhead. LHECC
is based on nonlinear block codes and relies on a
hierarchical approach to combine both symbolic and binary
error control encoding techniques. LHECC takes advantage
of existing information redundancy inherent within the
underlying channel in order to reduce or eliminate the
relative amount of information overhead required to
achieve error correction capability. In addition, LHECC
requires low logic complexity through its use of small block
lengths and lookup table-based encoding and decoding.
Also, the hierarchical nature of the encoding and decoding
procedure naturally lends itself to a shallow pipelined
approach for hardware implementation. These properties
allow these codes to have minimal encoding and decoding
area overhead while simultaneously exhibiting error correc-
tion capability, low end-to-end latency, and high end-to-
end throughput.

The remainder of this paper is organized as follows:
Section 2 provides a short overview of MBDS channel
technology. Section 3 describes LHECC and how these
codes can be implemented with compact encoders and
decoders at system-level interfaces. Section 4 describes how
the effectiveness of LHECC is measured through modeling
off-chip MBDS channels. Section 5 lists experimental results
and Section 6 concludes the paper.

2 MULTI-BIT DIFFERENTIAL SIGNALING (MBDS)

Multi-Bit Differential Signaling (MBDS) [1], [13], [14] is an

alternative to low-voltage differential signaling (LVDS) for

building system-level interconnects. MBDS channels retain

the favorable noise immunity and transmission character-

istics of differential channels while exhibiting higher infor-

mation density. This allows MBDS channels to make more

efficient use of I/O pad and power resources. In an MBDS

channel, a standard current-mode low voltage differential

(LVDS) driver design is scaled up such that it drives more

than two wired outputs. At the receiver, all wires are match-

terminated into a star termination network. The center of the

star network, referred to as the common point, becomes a

signal reference for standard LVDS receiver circuits. By

restricting the output of the driver such that exactly half of the

outputs are sourcing current (leaving the other half as return

paths), the voltage of the common point is held constant at the

DC offset of the driver.
This technique requires a physical-layer channel code,

called “N choose M (nCm)” encoding. An MBDS channel is

built with an arbitrary width n, where every symbol

contains m one-bits, where m ¼ floorðn=2Þ, and may

transmit any of n!=ððn�mÞ!m!Þ valid symbols. One differ-

ential receiver is used for each of the wires forming the

channel. As in an LVDS channel, a positive or negative

voltage across each receiver’s corresponding termination

resistor (relative to the common point) is interpreted as a

binary value. A comparison of LVDS and MBDS channels is

shown in Fig. 1. For example, an 8-wire wide MBDS channel

sources four units of current and may transmit any of

70 valid symbols, yielding a capacity of 6 bits. A differential

link with equivalent capacity would require 12 wires and

source six units of current, for a savings (MBDS over LVDS)

of 33 percent in both energy and wire count.

290 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 3, MARCH 2007

1. Also referred to as “m-out-of-n” encoding in prior work.

Fig. 1. Side-by-side comparison of LVDS and MBDS channels.

3 LIGHTWEIGHT HIERARCHICAL ERROR CONTROL

CODES

Lightweight Hierarchical Error Control Codes are designed
as a link-layer code that is applied over the physical-layer
nCm code used for MBDS channels. In addition to
providing forward error correction, LHECC defines a
technique for encoding binary data for interconnects
formed from multiple parallel MBDS channels. LHECC
utilizes a hierarchical approach to encoding source data that
allows it to make use of the inherent redundancy within
nCm symbol sets. This serves to minimize both the code
overhead and decoding complexity/latency required to
endow MBDS-based interconnects with error correction
capability. This section describes LHECC, how the codes
are encoded and decoded, and an example hardware
implementation.

3.1 Hierarchical Encoding and Decoding

To construct a code word, binary source data is logically
split into two portions referred to as the s-data and c-data.
The s-data portion is encoded using the high-level code,
consisting of a traditional ðn; k; d; qÞ linear block code.2

When encoding the high-level code, one or more parity
symbols are computed and appended to the s-data. This
encoding forms the high-level code block. The low-level
code is used to combine the high-level code block with the
c-data to select the actual sequence of nCm symbols that is
used to form the code word, which is then used for
transmission across an interconnect formed with a small
number of parallel MBDS channels. The resulting nonlinear
code space has an arbitrary distance that is set by the code
designer. Most importantly, it achieves error control with-
out requiring dedicated parity symbols that do not carry
any source data. In addition, fewer parity symbols are
required to correct symbols within the code word as
compared to a traditional block code because most errors
manifest themselves as invalid nCm symbols. Invalid
symbols may be detected at the receiver as symbol erasures
instead of symbol errors. Together, these attributes make
the code lightweight.

3.2 Low-Level Code

By definition, every nCm symbol set has an inherent ability
to detect certain types of bit errors that affect a symbol
during transmission over a symmetric channel. An nCm
symbol containing bit errors will be detected when the
symbol sampled by the receiver does not contain an
appropriate number of one-bits as defined by half the
symbol width. As a result, any random occurrence of bit
flips occurring within an nCm symbol will be detected as an
error by the receiver unless an equal number of 0-bits and
1-bits in the original symbol are changed as a result of the
errors. This implies that any transmission errors that are
manifested as an odd number of bit errors within a symbol
can be detected, while only a subset of transmission errors

that are manifested as an even number of bit errors within a

symbol can be detected.
The low-level code relies on transforming an nCm

symbol set in such a way that its inherent error detecting

capability is increased to become an error correcting

capability. Observe that any pair of randomly selected

nCm symbols chosen from any given nCm symbol set will

differ in at least two bit positions and, thus, the effective

Hamming distance is 2. The number of detectable errors for

any code set is defined as d� 1, where d is the distance.

However, the number of correctable bit errors is defined as

floorððd� 1Þ=2Þ. This means that a code set must have a

distance of no less than 3 before it gains the capability to

correct errors. As such, the Hamming distance of an nCm

symbol set must be increased in order to achieve capability for

error correction. This can be accomplished by partitioning the

nCm symbol set into subsets such that the distance of each

subset is defined by the distance parameter of the partitioning

operation. This distance may be any even value, ranging from

4 to the width of the symbol. For example, partitioning for

distance 4 would allow correction of any single-bit error

affecting any nCm symbol within a particular subset, while

partitioning for distance 6 would allow correction of any 1 or

2-bit errors affecting any nCm symbol within a particular

subset. The only restriction of this partitioning operation is

that each of the resulting subsets must be of equal size. The

partitioning operation forms the low-level code and is

defined as an ðnCm; s; c; dlÞ-code, where nCm defines the

nCm symbol set that is partitioned, s defines the number of

subsets, c defines the number of symbols per subset, and dl
defines the Hamming distance of each subset. The subsets

are enumerated such that each subset is assigned a unique

base-s value. Likewise, the nCm symbols within each subset

are enumerated such that each symbol is assigned a unique

base-c value that identifies the symbol within its corre-

sponding subset. This enumeration allows every nCm

symbol to be associated with a corresponding subset value,

or s-data value, and symbol value, or c-data value. An

example partitioning of a 6c3 symbol set into four subsets of

four symbols each with a target distance of 4 is shown in

Table 1.3

BAKOS ET AL.: LIGHTWEIGHT ERROR CORRECTION CODING FOR SYSTEM-LEVEL INTERCONNECTS 291

TABLE 1
Example Partitioning of a 6c3 Symbol Set Into Four Subsets
of Four Symbols Each, Using Target Hamming Distance of 4

2. n defines the number of symbols that form a code block (the basic unit
over which error control is performed), k defines the number of data
symbols encapsulated within the block, d defines the Hamming distance of
resultant code space, and q defines the base of each of the symbols that form
the block (which, together with k, defines the actual data capacity of each
symbol).

3. Note that this example partitioning only assigns 16 out of the
20 possible symbols in the 6c3 symbol set (four symbols are not used). As is
the case with many nCm symbol sets, it is impossible to partition the
6c3 symbol set with distance ¼ 4 if all symbols must be assigned to a subset.

3.3 High-Level Code

The high-level code of LHECC is a traditional ðn; k; dh; qÞ
linear block code. The error detection and correction

capability of this code depends solely on its distance.

However, the power contributed from the low-level code

guarantees that the overall error correction power of the

LHECC is higher than the error correction power of the

high-level code alone. A block code can detect up to dh � 1

symbol errors and correct these errors if the receiver has

knowledge of which symbols within the block are in error.

These types of errors are called erasures. The block code can

correct floorððdh � 1Þ=2Þ symbol errors in the block when the

receiver does not have a priori knowledge of which of the

symbols in the block were received in error.
In order to design an LHECC-encoded interconnect, the

designer must decide on several parameters that ultimately

determine the interconnect’s overall physical width, data

capacity, and error correcting power. These parameters are

the MBDS channel width, number of MBDS channels,

maximum number of correctable bits within each indivi-

dual nCm symbol, and maximum number of correctable

nCm symbols within the code word. The MBDS channel

width defines the nCm symbol set that is used for the

partitioning operation. This width, when multiplied by the

number of MBDS channels used to form the interconnect

(high-level block size n), defines the actual width (in wires)

of the interconnect.
The target distance for the partitioning operation

determines the maximum number of correctable bits within

each nCm symbol. Together, the maximum number of

correctable bits within each symbol and the maximum

number of correctable nCm symbols determine the required

distance of the high-level block code. The code is capable of

correcting up to dh � 1 nCm symbol errors, assuming these

symbols are received as erasures (invalid nCm symbols)

and each of these symbols contain less than or equal to

floorððdl � 1Þ=2Þ bit errors. Likewise, the LHECC is capable

of correcting up to floorððdh � 1Þ=2Þ nCm symbols errors,

assuming these symbols are received as pure errors

(incorrectly received but valid nCm symbols) and each of

these symbols contain less than or equal to floorððdl � 1Þ=2Þ
bit errors. Given the parameters of the high-level and low-

level codes, an LHECC configuration is formally defined as

an ðnCm; n; k; dh; s; c; dlÞ code.

3.4 Encoding

Fig. 2 shows an overview of the encoding procedure.
Segments of source data are split into an s-data portion and
a c-data portion. The s-data portion, represented as a
sequence of base-s symbols, is encoded using the high-level
block code. The c-data portion, represented as a sequence of
base-c symbols, is encoded by choosing the nCm symbols
corresponding to each of the c-data values from each of the
subsets specified in the sequence of values that make up the
high-level code block (s-data symbols and corresponding
base-s parity symbols).

For example, assume a simple interconnect formed with
three parallel 4c2 channels. Assume the 4c2 symbol set is
partitioned into three subsets, two symbols per subset, and
subset distance of 4, as shown in Table 2.

Assume a high-level code consisting of a ðn ¼ 3; k ¼
2; d ¼ 2; q ¼ 3Þ checksum code. This high-level code is
capable of correcting one erasure. This code carries 3 bits
into its s-data and 3 bits in its c-data, yielding an
interconnect capacity of 6 bits using 12 wires. Assume the
transmitter wishes to encode and transmit the binary
sequence “1111012” across the three 4c2 channels. The
following actions occur at the encoder:

. The most significant 3 bits become the s-data. 1112 is
converted from base-2 to base-3, yielding an s-data
representation of 213.

. A checksum is computed and appended to the s-data,
forming the high-level code block 2þ 1 ðmod 3Þ ¼ 03.

. 2103 becomes the high-level code block. The least
significant 3 bits of the source data (the c-data) is
used to choose an nCm symbol from the subsets
specified by the high-level code block. Using Table 2,
2103 is combined, digit by digit, with 1012 to form
the code word of 1001 0101 11002.

. The code word is used as an input to three parallel
4c2 MBDS drivers.

3.5 Decoding

The receiver decodes the code word by following a discrete
sequence of steps. First, each nCm symbol making up the
code word is “resolved” into its corresponding s-data value,
c-data value, and an error flag. The error flag indicates if the
symbol was received as an invalid nCm symbol. Symbols
resolved with an error flag are treated as erasures relative to
the high-level code. Next, the decoder performs a preliminary
check to determine if the code word was received with too
many errors to be decoded. There are two possible ways this
can occur. First, the decoder determines if there are more
erasures in the code word (signaled by error flags) than the
high-level block code can correct. Next, the high-level code

292 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 3, MARCH 2007

Fig. 2. Hierarchical ECC encoding.

TABLE 2
Partitioning for 4c2 Symbol Set

block is checked to ensure that it doesn’t contain more
symbol errors than can be corrected by the high-level code.
This can occur if symbol errors exist that aren’t detected as
invalid nCm symbols and the high-level code block
contains more errors than can be corrected by the high-
level code.

When errors occur with a code word, each of the high-
level code block symbols that correspond to each of the
nCm symbols received in error are corrected in parallel
using the high-level code. This allows the successful
extraction of the entire high-level code block, the corre-
sponding subset values, and the s-data. These corrected
high-level code symbols, along with each corresponding
sampled nCm symbol received in error, are used to
compute the corrected nCm symbols from the code word.
This is performed by determining which nCm symbol
within the subset specified by the corrected high-level code
block symbol value has minimum distance relative to the
received symbol. Next, the c-data is determined from the
received and corrected nCm symbols. Finally, the s-data
and c-data are converted to base-2 (if required), yielding the
original binary source data.

For example, assume the code word from the previous
example, 1001 0101 11002, is transmitted across the inter-
connect and noise affecting the channels causes the receiver
to sample the following code word: 1101 0101 11002. Note
that the most significant nCm symbol contains one bit error.
The following actions occur at the decoder:

. The most significant symbol contains three 1-bits,
meaning that it is an invalid nCm symbol.

. The code word is resolved to a high-level code block
of ?103. Checksum codes have the ability to correct
one erasure, so combinational logic in the decoder
computes 0� 1 ðmod 3Þ ¼ 23.

. The symbol received in error belongs to subset 2. A
minimum distance decoder is used to determine
which of the symbols in subset 2 most closely
resembles 11012.

. Of the two symbols in subset 2, 01102 differs from
the received symbol in three bit positions, while
10012 differs in only one bit position. The symbol is
corrected to 10012.

3.6 LHECC Overhead

Overhead is defined as the effective number of information
bits carried by the code word that are effectively lost due to
the code redundancy required for forward error correction.
Recall that the only components of a code word that are
strictly used for redundancy are the parity symbols of the
high-level code block. In other words, instead of relegating
entire nCm symbols in the code word to be used as parity
information, a portion of the c-data is effectively “piggy-
backed” onto the parity symbols of the high-level code.
However, relative to the high-level code block, fewer parity
symbols are required to achieve error correction capability
as compared to a traditional block code. This is because bit
errors that manifest themselves as invalid symbols can be
corrected as erasures relative to the high-level code and
fewer parity symbols are required to correct erasures as
opposed to errors. In this case, overhead is defined as:

Overheadbits ¼ ðn� kÞ � log2 sb c:

The base of the c-data determines how much source data
is carried within the parity symbols in the high-level code
block. Therefore, overhead is minimal when the value of s is
minimized while the value of c is maximized. This is an
important consideration for partitioning nCm symbol sets.
Another way to measure information efficiency for an
interconnect with LHECC is to determine its code rate
relative to a raw interconnect (without LHECC). We refer to
this as relative code rate, defined as the bit capacity of an
interconnect with LHECC divided by the bit capacity of the
same interconnect without LHECC (assuming indepen-
dently binary-mapped parallel nCm channels). This mea-
surement is defined as:

Raterelative ¼
k � log2 sb c þ n � log2 cb c
n � log2 nCmsizeb c :

Table 3 lists possible partitionings of several nCm
symbol sets. Each of these partitionings was achieved
through the use of a branch-and-bound search over the
space of symbol-subset assignment states. The column
labeled “overhead/parity” expresses the overhead required
for each high-level parity symbol in terms of bits, while the

BAKOS ET AL.: LIGHTWEIGHT ERROR CORRECTION CODING FOR SYSTEM-LEVEL INTERCONNECTS 293

TABLE 3
nCm Symbol Set Partitionings Achieved through a Branch-and-Bound Search Algorithm

column labeled “relative overhead” expresses the overhead
for each high-level parity symbol in terms of percentage of a
single symbol’s capacity. As shown in this table, given a
symbol set and target distance, overhead is minimal when
the number of subsets ðsÞ is minimized relative to the
number of symbols per subset ðcÞ. The next section will
describe how this “rule of thumb” also serves to reduce the
complexity of the decoder architecture.

3.7 Encoder/Decoder Architectures

This section discusses implementation details regarding
encoder and decoder architectures for LHECC-encoded
interconnects. Such circuits must be both compact (allowing
integration into system-level I/O interfaces) as well as
capable of operating at high operating frequency. LHECC
has three properties that make this possible. First, due to the
low relative code overhead of LHECC, the encoders and
decoders may be designed for codes with small block
lengths of three to four symbols while still retaining a high
relative code rate. Small block sizes serve to reduce overall
decoding complexity because the core operations within the
encoder and decoder may be based on small, low-latency
combinational logic circuits (implementing lookup tables).
Second, the partitioning operation effectively reduces block
code decoding complexity because it ensures that the
symbol base of the high-level code is reduced relative to
the base of the nCm symbol set. In other words, decoding
may be logically split in two discrete steps, where each step
operates over a symbol base less then the native symbol
base of the nCm symbols. Third, the hierarchical nature of
LHECC allows for a clear division of tasks for parallel
(pipelined) implementation. Note that the pipelined design
of the encoder and decoder described in this section add
end-to-end latency to the interconnect. In this work, we
strictly regard end-to-end throughput as a design goal that carries
higher priority than end-to-latency.

3.7.1 Example Encoder/Decoder Architecture

We utilize a sample interconnect as a backdrop to discuss
a possible encoder and decoder implementation. This
sample interconnect consists of 18 wires that encode
10 binary bits, configured as three 6c3 channels. Each
circuit described in this section is synthesized HDL
targeting a simple standard cell library consisting of six,
minimal-sized primitive logic cells: 1-bit latch, inverter, 2
and 3-input NAND gate, and 2 and 3-input NOR gate.
Our sample interconnect consists of three 6c3 channels,
where the 6c3 symbol set is partitioned into four subsets
of four symbols per subset and a high-level block code
consisting of an ðn ¼ 3; k ¼ 2; d ¼ 2; q ¼ 4Þ-checksum. This
code can correct one bit error affecting one nCm symbol
per code word.

As is common in code theory, the encoder implementa-
tion is relatively simple as compared to the decoder
implementation. An example encoder is shown in Fig. 3.
This encoder is divided into two pipeline stages and
requires 208 gates and 30 latches. The “high-level code”
stage of the encoder is where the checksum parity symbol is
computed from the two base-4 s-data values. This compo-
nent is based on table lookup and requires 19 gates and five
gate delays. Slightly more sophisticated codes can also be

encoded in only one stage with a similar number of logic
gates. For example, an ðn ¼ 4; k ¼ 2; d ¼ 3; q ¼ 3Þ maximum
distance separable (MDS) code, requiring generation of two
base-3 parity symbols, can be built with 37 gates and five
gate delays. The “low-level” stage of the encoder is
responsible for generating inputs to the MBDS drivers
based on the high-level code block and the c-data values for
each symbol in the code word. In this case, each of these
components requires 63 gates with five gate delays (in
parallel) each. The final pipeline register is used to ensure
the inputs to each of the MBDS drivers remains stable for a
full clock cycle.

An example decoder corresponding to the encoder
shown in Fig. 3 is shown in Fig. 4. This decoder is divided
into six pipeline stages and requires 830 gates and
128 latches. The first pipeline register is responsible for
sampling and latching the symbols from the MBDS
receivers. In the “resolver” stage, each of the symbols is
resolved into its corresponding s-data value, c-data value,
and error flag. The resolver components require 130 gates
each and seven gate delays (in parallel). The “high-level
code” stage is responsible for managing the high-level code.
This involves performing preliminary checks for nondecod-
able code words and high-level symbol correction. The
“block error detector” determines if there are too many
errors in the code word to correct. This occurs when there
are too many erasures (error flags) or when there are no
detected erasures but the high-level code block is invalid.
This component requires 47 gates and seven gate delays.
The “block corrector” component, operating in parallel, is
responsible for determining the subset value of any single
nCm symbol that is received as an invalid nCm symbol.
This component requires 49 gates and seven gate delays.
Since these operations are performed in parallel, the entire
stage requires seven gate delays.

More sophisticated high-level codes may also be im-
plemented in one pipeline stage. For example, for an ðn ¼
4; k ¼ 2; d ¼ 3; q ¼ 3Þ block code (capable of correcting up to
two erasures or one pure error), the block code error
detector requires 106 gates and seven gate delays and the

294 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 3, MARCH 2007

Fig. 3. Example encoder architecture.

block code error corrector was designed such that it
requires 364 gates and seven gate delays.

Referring again to the example decoder shown in Fig. 4,
“Low-level code 1” and “Low level code 2” are two stages
that manage the low-level code. They perform minimum
distance decoding based on the subset value computed by
the block corrector and the received symbol. This operation
is split into two stages in order to reduce the per-stage
latency requirements for minimum distance decoding. If a
received nCm symbol is equidistant to two valid nCm
symbols in its subset, a flag is raised, indicating that the
errors cannot be corrected. Together, these stages require
202 gates and require six gate delays in the first stage and
eight gate delays in the second stage. Finally, the “routing”
stage prepares the decoded data for the on-chip reception
and distribution.

The encoder and decoder designs described in this
section are based on combinational logic-based lookup
tables as opposed to arithmetic operations. Unfortunately,
this prevents these implementations from being scalable
relative to symbol and block width. This is a disadvantage
because code density increases with symbol width and
block width. However, scalability is not an important goal
in this work for two reasons. First, next-generation system-
level interconnects are expected to become serialized
(narrow) in order to achieve low I/O and power resources.
This means that wide interconnects (resulting from the use
of multiple parallel wide nCm channels) are not favorable.4

Second, short symbol and block widths facilitate shallow
pipeline stages and thus allow for decoders that are simple,
low latency, and capable of operating at high pipeline
speed. This allows the code/interconnect designer to place
tight bounds on the size and latency of each lookup table
required by the decoder. Although traditional error correc-
tion codes become inefficient (exhibit low code rate) when

used with short symbol and block widths, LHECC sidesteps
this problem by virtue of having lower overall relative code
overhead.

Table 4 describes how each major component in the
above decoder implementation scales in complexity
(latency and number of logic gates) relative to symbol
width, s, c, block width, and number of parity symbols. As
shown in the table, several components have exponential
growth as certain parameters are scaled. However, the
example implementation illustrates how small block sizes
and symbol widths can be reasonably implemented with
less than 1,000 total gates (trivial by today’s standards when
10s of millions of gates are typical for large-scale digital
systems) and the experimental results illustrate a substan-
tial benefit in signal integrity for these parameters.

Table 5 lists the gate count, maximum pipeline stage
latency, and pipeline depth of several additional sample
encoder and decoder implementations. Each implementa-
tion requires on the order of 1,000 gates, which constitutes a
trivial requirement for both real estate area (as compared to
typical logic integration densities) and power consumption
(as compared to the power consumed by the corresponding
current-mode channels). We also note that, while more
aggressive approaches to designing the decoder logic may
exist, such work is outside the scope of this paper.

3.7.2 Decoder Latency

Note that the decoder pipeline shown in Fig. 4 has a

maximum pipeline stage latency of seven primitive logic

gate delays5 and a pipeline depth of 5. Note that the per-

wire signaling speed of the channels afforded by future chip

and PCB fabrication technologies may require a deepening

of the decoder pipeline in order to match the speed of the

corresponding interconnect. If this is the case, the pipeline

may be deepened by splitting the logic of individual

components over multiple pipeline stages at the cost of

additional pipeline registers and additional end-to-end

BAKOS ET AL.: LIGHTWEIGHT ERROR CORRECTION CODING FOR SYSTEM-LEVEL INTERCONNECTS 295

4. One obvious solution to this would be to use wide nCm symbols but
only one or two channels (trade off symbol width with block width).
However, this would actually decrease overall code density because the
relative overhead required by the high-level code’s parity symbols would
cause a dramatic increase in overall code overhead. 5. Roughly equivalent to seven FO4 gate delays.

Fig. 4. Example decoder architecture.

latency. This is demonstrated by the decoder shown in

Fig. 4, where the “minimum distance decoder” behavior is

split into two stages by feeding intermediate results from

the first pipeline stage into a second stage.
We have intentionally targeted a standard digital CMOS

fabrication process (as opposed to a specialized high-

performance RF analog process) when designing the MBDS

drivers and receivers. This decision is based on our design

requirement to allow integration of the drivers and

receivers as drop-in IP components into existing high-speed

digital designs such as microprocessors and FPGAs. There-

fore, because the drivers and receivers are designed using

standard digital MOSFET devices, their maximum signaling

speed is expected to scale at the same rate as the digital

logic speed of their corresponding decoders. Advances in

PCB dielectric material notwithstanding, the decoder pipe-

line depth is nominally fixed and independent of the chip

fabrication technology and channel speed. As a result, the

relative speed of the decoder and the associated inter-

connect will scale with fabrication technology without the

need for deepening the pipeline.

4 EXPERIMENTAL DESIGN

We measure the effectiveness of LHECC by modeling chip-

to-chip interconnects consisting of three to four parallel

MBDS channels. These models capture error behavior over

a range of transmission rates and noise characteristics. As

shown in Fig. 5, an MBDS channel of width n consists of a

model for a packaged transmitter chip, packaged receiver

chip, PCB transmission line models, and a termination

network model.
The interconnect models are simulated in the time-

domain using process-defined CMOS voltage levels to inject

a pseudorandom sequence of valid code words into the

drivers and interpreting the corresponding outputs from

the receivers after the latency of the channel (using process-

defined voltage ranges).

4.1 Channel Model

Included in our channel model are the effects of the driver

and receiver devices that form the end-points of the

channel. These devices themselves are responsible for

generating certain types of noise that affect the performance

of the channel. In addition, these devices have their own

limitations for transmitting and interpreting the signal

296 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 3, MARCH 2007

TABLE 4
Scalability of Decoder Components

TABLE 5
Statistics for Example LHECC Architectures

carried by the wires that form the interconnect (based on
the characteristics of the fabrication technology). The driver
and receiver circuits are based on MOSFET transistor
models from the Taiwan Semiconductor Manufacturing
Corporation (TSMC) .18 um commercial design kit.

As shown in Fig. 6, the driver circuit is a current-steering
design that supports an arbitrary channel width. The
transistors in each driver are sized and biased such that
each driver output provides a mean-absolute-value current
of 7.5 mA.6 As shown in Fig. 7, the receiver circuit is a self-
biasing 2-stage LVDS receiver from the literature [4]. The
receiver contains concurrent N-type and P-type differential
stages, allowing for a wide common-mode input range. The
output of the receiver is amplified and conditioned to
CMOS levels using two tapered CMOS inverters in series.
The receiver’s role is to periodically sample and discrimi-
nate a differential input signal to determine if the current
state of the signal represents a one-bit or zero-bit. In this
sense, the receiver acts as an analog-to-digital converter and
amplifier.

Each electrical connection from the driver and receiver
circuits to the PCB is modeled as a wire bonded package
connection. This connection consists of a wire bond model
connecting the chip’s I/O pad to a corresponding package
I/O pad, with solder bump models at both ends. These
models were generated by a package modeling tool from
Chatoyant [5]. The model parameters are generated using
realistic geometries and pitch for the chip, package, and
wire bond features.

The channel model includes fully coupled transmission
line models for 7:500 PCB traces. PCB transmission lines
exhibit frequency-dependent signal attenuation (low-pass

frequency response) and crosstalk (AC coupling) among

nearby traces. The traces are spaced and sized to match

impedance to the termination network (50 ohms). Layer

spacing distances are based on a standard PCB fabrication

process and assume a dielectric material of FR-4. Models for

these structures are generated with Cadence’s Transmission

Line Model Generator (LMG) [6]. This tool computes and

generates lumped transmission line models. Each lump

includes ground capacitance, serial inductance, and mutual

capacitance/inductance from each wire to all other wires.
The channel model itself captures the degradation of the

signal between the driver and receiver as a function of

transmission frequency and external noise sources. This

degradation occurs as a result of factors such as transistor

switching noise, edge jitter, and frequency-dependant

signal attenuation and crosstalk. The output of the receiver

is a conditioned and amplified CMOS voltage that is

suitable for on-chip transmission and use. However, during

sampling, if the receiver’s input signal is too badly

BAKOS ET AL.: LIGHTWEIGHT ERROR CORRECTION CODING FOR SYSTEM-LEVEL INTERCONNECTS 297

6. This value was chosen arbitrarily to keep the driver output magnitude
consistent across each of the driver designs. This is also a reasonable value
when compared to state-of-art systems. To clarify, this implies that an nCm
driver would always be sourcing ðn=2Þ�7:5 mA of current and dissipating
this current across a 50-ohm termination at the receiver (as well as a 50-ohm
matched impedance fully coupled transmission line).

Fig. 5. PCB-based MBDS channel model.

Fig. 6. Example 4c2 MBDS driver.

degraded or skewed, the receiver will incorrectly discrimi-
nate this signal at the sample time, resulting in a bit error.

Eye diagrams are used to illustrate this phenomenon.
Each eye diagram is a plot of a signal continuously plotted
over itself for two bit periods. These signals originate from a
random bit stream. This plot resembles an eye and signal
integrity is a function of the “openness” of the eye. In an eye
diagram, jitter is shown by the thickening of the left and
right sides of the eye, while noise is shown by the
thickening of the top and bottom of the eye. Therefore, as
the signal degrades, the eye closes. Eye diagrams over
increasing transmission rates are shown in Figs. 8 and 9.
Fig. 8 shows eye diagrams of the receiver input signal and
Fig. 9 shows the corresponding receiver output signal.
These eye diagrams demonstrate how increasing signal
degradation across the channel causes higher numbers of
bit errors at the receiver output. These errors are shown at
the output of the receiver as increasing jitter and eventual
signal breakdown. At high transmission rates, bit errors are
visible at the receiver output.

4.2 Supply Noise Model

MBDS drivers and receivers are intended for use as a
“drop-in” system interface for applications such as micro-
processor system buses and network-on-chip channels
(global on-chip interconnects). The switching activity of
logic located elsewhere on the host chip generates noise on
the chip’s power supply. Supply noise is an increasingly
important consideration for large-scale, high-speed digital
systems [7]. Such noise would certainly affect system-level
interfaces as fluctuation in supply voltage reduces signal
margins for drivers and receivers. LHECC provides a
method for recovering from errors caused by this type of
noise. However, this type of noise is not inherently modeled
by the channel model. In order to model this type of noise
within the MBDS channel model, supply noise must be
artificially generated and independently added as an
external source to the supply voltage of both the driver
and the receiver circuits.

Intel has measured the power supply noise on a busy
Pentium 4 processor operating with a 1.5 V supply voltage
[7], [8] by probing Vdd and Vss pin pairs at various processor
package locations. The voltage reading indicated a Gaus-
sian signal centered at 1.5 V with a 17-20 mV standard

deviation. These measurements provide a rough statistical
approximation of supply noise characteristics for a typical
microprocessor. Since this noise is generated from switch-
ing activity originating from CMOS logic, the noise is
assumed to exhibit frequency characteristics centered on the
core operating frequency (clock frequency) of the digital
circuitry. When modeling this type of noise, it is assumed
that the MBDS channels are operating at the same
frequency as the core logic. To generate the noise signal,
white Gaussian noise is generated for 20 �s at a sampling
rate of 20 GHz. The noise is then filtered through a pass-
band filter having a band of 200 MHz centered on the per-
wire switching frequency of the channel that is being
simulated. The standard deviation of the unfiltered Gaus-
sian noise signal is set such that the standard deviation of
the filtered signal is 30-40 mV.7

4.3 Fringe Capacitance

Other noise sources that are not inherently modeled by the
channel model are effects from parasitic fringe capacitance
that originate from the physical layout of the circuits and
package. Interconnect formed by parallel wires is tradition-
ally laid out on-chip as a group of adjacent traces. Likewise,
the corresponding package I/O pads for these wires are also
adjacent. The proximities of these features add additional
crosstalk to signals within the channel. This crosstalk is
modeled by fringe capacitance between adjacent signals
within each channel. For the channel model, the value of these
capacitors is 500 fF, verified as being realistic by the Cadence
Diva extractor as reasonable fringe capacitance values.8

4.4 Experimental Interconnects

Section 5 presents results obtained through simulation of
five different interconnect configurations. Each interconnect
model is simulated with Cadence’s Spectre device-level
analog circuit simulation tool [6] (equivalent to SPICE). The
simulations are designed to measure the relative amount of
noise immunity gained through the addition of LHECC to
raw MBDS-based interconnects. Each interconnect is asso-
ciated with a code configuration having various levels of
overhead and error correcting power.

The results are collected by counting the number of code
word errors that would occur at the receiver given the
presence and absence of LHECC over a simulation run of
100,000 code word transmissions. A code word error occurs
when signal errors prevent encoded source data from being
successfully decoded back to its original source data. In the
case of an interconnect without LHECC, a code word error
occurs whenever any single bit within any of the nCm
symbols carried by the interconnect is received in error. In
the case of an interconnect with LHECC, a code word error
occurs whenever there are more bit errors present within
the received code word than the code is capable of
correcting.

298 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 3, MARCH 2007

Fig. 7. Differential receiver design [4].

7. The standard deviation of our generated noise is purposely set higher
than the measured standard deviation on the Intel processor in order to
compensate for the higher supply voltage of the TSMC .18um technology
(1.5 V to 1.8 V), as well as to slightly exaggerate the noise to test worst-case
effects.

8. Again, this value was purposely set to an upper bound in order to test
worst-case effects.

Table 6 defines three interconnect configurations that are

designed to have minimum information and decoding

overhead. Each of these interconnects is capable of correcting

one nCm symbol containing a single bit error (high-level

code is a ðn ¼ 3; k ¼ 2; d ¼ 2; q ¼ sÞ-checksum and each

symbol set is partitioned for distance 4). The other two

interconnects and associated LHECC parameters are de-

signed to have higher overhead and multisymbol error

correcting capability. Table 7 shows an interconnect con-

figuration that is capable of correcting up to two symbols

having one bit error each (high-level code is an ðn ¼ 4; k ¼
2; d ¼ 3; q ¼ 3Þ-MDS code and each symbol set is partitioned

for distance 4). Table 8 shows an interconnect configuration

that is capable of correcting up to two symbols having up to

two bit errors each, assuming the errors yield invalid nCm

symbols or one symbol having two bit errors when the

errors yield a valid nCm symbol (high-level code is an ðn ¼
4; k ¼ 2; d ¼ 3; q ¼ 9Þ-MDS code and the symbol set is

partitioned for distance 6).
In Tables 6, 7, and 8, the “interconnect” column shows

the number and type of MBDS channel. The “width”

column shows the overall width of the interconnect in the

total number of wires. The “capacity (no-ecc)” column
shows how many bits of source data are carried by the
interconnect without LHECC. The absolute code rate is also
indicated in this column, computed as the bit capacity of the
interconnect divided by the total number of wires. The
“capacity (ecc)” column shows how many bits of source
data are carried by the interconnect with LHECC, as well as
the corresponding absolute code rate. The “rel. code rate”
column shows the relative code rate for the chosen LHECC
parameters, which is computed as the number of bits
carried by the interconnect with LHECC divided by the
number of bits carried by the interconnect without LHECC.
This value represents the amount of relative information
overhead required for LHECC. The overhead in bits is the
difference in capacity between the interconnect without
LHECC and the interconnect with LHECC.

4.5 Experimental Results

The code word error counts for each interconnect config-
uration with each type of noise configuration over a range
of code word transmission rates are shown in Tables 9, 10,
11, 12, and 13. A zero error count for any particular
simulation run means that no code word errors occurred

BAKOS ET AL.: LIGHTWEIGHT ERROR CORRECTION CODING FOR SYSTEM-LEVEL INTERCONNECTS 299

Fig. 8. Eye diagrams of one receiver circuit input as symbol transmission rate is scaled along the following scale: (a) 1.8 GHz, (b) 2.2 GHz,

(c) 2.6 GHz, (d) 3.0 GHz, (e) 3.4 GHz, (f) 3.8 GHz, (g) 4.2 GHz, and (h) 4.6 GHz.

over the 100,000 code word simulation run. This may be
interpreted as a code word error rate of less than 10�5 for
the sampled simulation time, whereas a single digit error
count may be interpreted as a symbol error rate of 10�5, a
double-digit error count as 10�4, etc.

The most important question that these results must
answer is the following: Given a predefined tolerable symbol
error rate and its corresponding maximum code word
transmission rates (switching frequency) for both the raw and
error control-encoded interconnects, does the relative increase in
code word transmission rate facilitated by the addition of error

control coding yield a higher effective end-to-end interconnect

throughput given the information overhead required by the

code? With traditional bit-serial communication channels

300 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 3, MARCH 2007

Fig. 9. Eye diagrams of one receiver output as symbol transmission rate is scaled along the following scale: (a) 1.8 GHz, (b) 2.2 GHz, (c) 2.6 GHz,

(d) 3.0 GHz, (e) 3.4 GHz, (f) 3.8 GHz, (g) 4.2 GHz, and (h) 4.6 GHz.

TABLE 6
Single-Symbol Correcting Interconnects

The LHECC configuration associated with these interconnects is
capable of correcting one symbol containing one bit error.

TABLE 8
Multiple-Symbol Correcting Interconnect

The LHECC configuration associated with this interconnect is capable of
correcting up to two symbols containing up to two bit errors each or one
symbol containing up to two bit errors if the result of the errors yield a
valid nCm symbol.

TABLE 7
Multiple-Symbol Correcting Interconnect

The LHECC configuration associated with this interconnect is capable of
correcting up to two symbols containing one bit error each.

using traditional classes of error control codes, the answer
to this question is invariably yes. However, MBDS
channels consist of a group of wires that are tightly
coupled through their termination network as well as
through their associated fringe capacitance and mutual
inductance. Therefore, the effects of noise affecting any
single aspect of the channel may propagate throughout
the entire channel. Therefore, the question that we seek to
answer is whether a bit-level error correcting code would
be beneficial for interconnects composed of such tightly
coupled multibit channels.

Given the relatively short sampling period of our
simulations, we can perform a rough approximation to
answer this question for LHECC. For example, consider the
single-symbol-correcting 8c4 interconnect with external
supply noise (Table 11b), the raw interconnect has a
maximum transmission rate of 2.6 Giga-code words/second
before reaching a code word error rate of 10�5. As shown in
Table 6, without error control code overhead, each code
word carries 18 bits, yielding an effective end-to-end
throughput of 46.8 Gigabits/second. However, the equiva-
lent error control coded interconnect has a maximum

BAKOS ET AL.: LIGHTWEIGHT ERROR CORRECTION CODING FOR SYSTEM-LEVEL INTERCONNECTS 301

TABLE 9
Code Word Error Counts for Single-Symbol Correcting Interconnect Formed with Three Parallel 4c2 Channels with

(a) Channel Noise Sources Only, (b) Generated Supply Noise, and (c) Additional Fringe Capacitance

TABLE 10
Code Word Error Counts for Single-Symbol Correcting Interconnect Form with Three Parallel 6c3 Channels with

(a) Channel Noise Sources Only, (b) Generated Supply Noise, and (c) Additional Fringe Capacitance

transmission rate of 3.8 Giga-code words/second before
reaching a code word error rate of 10�5. With error control
code overhead, each code word carries 15 bits, yielding an
effective end-to-end throughput of 57 Gigabits/second, for
an effective speedup of 1.22. Performing the same analysis
for a symbol error rate of 10�3 yields a convergence in
effective throughput. As with traditional communication
channels, the effective increase in throughput decreases with
higher tolerable error rates. However, the example error
rates given in this section are unreasonably high, suggesting
a higher increase in interconnect throughput (speedup) for
lower tolerable error rates. The remainder of the results

show that all interconnect configurations over all noise
models exhibit a speedup in end-to-end throughput for a
fixed code word error rate of 10�5 when LHECC is utilized.

The results indicate a uniform speedup in end-to-end
throughput for the error-control-encoded interconnect over
the corresponding raw, non-error-control-encoded inter-
connect for all of the single-symbol-correcting codes, and
slightly better speedup for the double-symbol-correcting
codes. However, when different interconnect configurations
are compared, overall throughput efficiency (throughput
contribution per wire) increases with overall code density,
giving an advantage to wider interconnects. Therefore, each

302 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 3, MARCH 2007

TABLE 11
Code Word Error Counts for Single-Symbol Correcting Interconnect Formed with Three Parallel 8c4 Channels with

(a) Channel Noise Sources Only, (b) Generated Supply Noise, and (c) Additional Fringe Capacitance

TABLE 12
Code Word Error Counts for Double-Symbol Correcting Interconnect Formed with Four Parallel 4c2 Channels with

(a) Channel Noise Sources Only, (b) Generated Supply Noise, and (c) Additional Fringe Capacitance

of these interconnect configurations represents a funda-
mental trade-off in decoder logic complexity and I/O pins
versus end-to-end throughput.9 This trade-off represents a
design space for an interconnect designer.

5 CONCLUSION

This paper describes Lightweight Hierarchical Error Con-
trol Codes, a technique for applying error control to high-
performance system-level interconnect with low require-
ments for information and logic overhead. This paper
illustrates how LHECC is effective at achieving low over-
head error control for system-level interconnects built with
Multi-Bit Differential Signaling (MBDS) channels. The
sample implementations show that LHECC encoders and
decoders are viable for integration into system-level
interfaces due to their low requirement for chip area and
capability of operating at speeds that match or exceed the
operating speeds of current and next-generation system-
level interconnects. Finally, interconnect simulation verifies
that error control coding over MBDS channel technology
exhibits end-to-end throughput improvements that are
consistent with traditional error correction encoding for
traditional communication channels.

REFERENCES

[1] D.M. Chiarulli, J.D. Bakos, J.R. Martin, and S.P. Levitan, “Area,
Power, and Pin Efficient Bus Transceiver Using Multi-Bit-
Differential Signaling,” Proc. IEEE Int’l Symp. Circuits and Systems
(ISCAS ’05), May 2005.

[2] IEEE Standard for Low-Voltage Differential Signaling (LVDS) for
Scalable Coherent Interface (SCI), 1596.3 SCI-LVDS standard, IEEE
Std. 1596.3-1996, 1996.

[3] A. Narasimhan, M. Kasotiya, and R. Sridhar, “A Low-Swing
Differential Signalling Scheme for On-Chip Global Interconnects,”
Proc. 18th Int’l Conf. VLSI Design, pp. 634-639, Jan. 2005.

[4] S. Hirsch and H.-J. Pfleiderer, “CMOS Receiver Circuits for High-
Speed Data Transmission According to LVDS-Standard,” Proc.
SPIE, vol. 5117, 2003.

[5] M. Kahrs, S.P. Levitan, D.M. Chiarulli, T.P. Kurzweg, J.A.
Martı́nez, J. Boles, A.J. Davare, E. Jackson, C. Windish, F.
Kiamilev, A. Bhaduri, M. Taufik, X. Wang, A. Morris, J.
Kruchowski, and B.K. Gilbert, “System-Level Modeling and
Simulation of the 10G Optoelectronic Interconnect,” IEEE J.
Selected Topics in Quantum Electronics, vol. 21, no. 12, pp. 3244-
3256, Dec. 2003.

[6] Cadence Design Systems, http://www.cadence.com, 2007.
[7] M. Saint-Laurent and M. Swaminathan, “Impact of Power-Supply

Noise on Timing in High-Frequency Microprocessors,” IEEE
Trans. Advanced Packaging, vol. 27, no. 1, pp. 135-144, Feb. 2004.

[8] Private correspondence with Martin Saint-Laurent, Intel Corp.
[9] Xilinx RocketIO Transceiver User Guide, http://direct.xilinx.com/

bvdocs/userguides/ug024.pdf, Dec. 2004.
[10] Digital Visual Interface, Revision 1.0, Digital Display Working

Group (DDWG), http://www.ddwg.org/lib/dvi_10.pdf, Apr.
1999.

[11] C. Sauer, M. Gries, J.I. Gomez, S. Weber, and K. Keutzer,
“Developing a Flexible Interface for RapidIO, Hypertransport,
and PCI-Express,” Proc. Int’l Conf. Parallel Computing in Electrical
Eng., pp. 129-134, Sept. 2004.

[12] R. Ho, K.W. Mai, and M.A. Horowitz, “The Future of Wires,” Proc.
IEEE, vol. 89, no. 4, pp. 490-504, Apr. 2001.

[13] D.M. Chiarulli, J.D. Bakos, J.R. Martin, and S.P. Levitan, “Area,
Power, and Pin Efficient Bus Structures Using Multi-Bit-Differ-
ential Signaling,” Proc. SPIE Europe Int’l Symp.: Microtechnologies
for the New Millennium, May 2005.

[14] S.P. Levitan, D.M. Chiarulli, S. Dickerson, J. Bakos, and J. Martin,
“Power Efficient Communication Using Multi-Bit-Differential
Signaling,” Proc. 16th Ann. IEEE-LEOS Workshop Interconnections
within High-Speed Digital Systems, May 2005.

BAKOS ET AL.: LIGHTWEIGHT ERROR CORRECTION CODING FOR SYSTEM-LEVEL INTERCONNECTS 303

9. Channel capacity, in terms of number of bits transferred over the
interconnect in one clock cycle, is also a parameter upon which a designer
may place high importance. For example, router chips communicating on a
wormhole-switched network may need to design router buffers and
internal crossbar switches according to the atomic transfer unit of the
network’s router-to-router interconnects. The designer may also wish to
bundle control signals along with the data signals within the interconnect.

TABLE 13
Code Word Error Counts for Double-Symbol Correcting Interconnect Formed with Four Parallel 6c3 Channels with

(a) Channel Noise Sources Only, (b) Generated Supply Noise, and (c) Additional Fringe Capacitance

Jason D. Bakos received the BS degree in
computer science from Youngstown State Uni-
versity in 1999 and the PhD degree in computer
science from the University of Pittsburgh in
2005. He worked as a research and teaching
assistant at the University of Pittsburgh from
1999 to 2005 and currently serves as an
assistant professor in the Department of Com-
puter Science and Engineering at the University
of South Carolina. He is a reviewer for the

International Symposium of Circuits and Systems and for John Wiley &
Sons. He has published articles in publications spanning a broad range
of diverse disciplines, including circuits and systems, optoelectronics,
and reconfigurable computing. He was the recipient of DAC/ISSCC/
IEEE/ACM design contest awards at the Design Automation Conference
in 2002 and 2004. He is a member of the IEEE, ACM, and IEEE
Computer Society.

Donald M. Chiarulli received the MS degree in
computer science from the Virginia Polytechnic
Institute in 1979 and the PhD degree, also in
computer science, from Louisiana State Univer-
sity in 1986. He is currently a professor of
computer science at the University of Pittsburgh.
His research interests are in computer architec-
ture with a specific focus on technology and
architecture for interconnects. Contributions
from his group have included the demonstration

of the first all-optical address decoder, several designs for time/space
multiplexed data bus architectures, and an all-optical distributed bus
arbitration algorithm. Later contributions include the Partitioned Optical
Passive Star (POPS) architecture for multiprocessor interconnection
networks. Other contributions from his group have included a prediction
method for multiprocessor memory access patterns and contributions to
the development of a set of tools for optoelectronic CAD. Both of these
efforts have earned best paper awards at the International Conference
on Neural Networks (ICNN) and the Design Automation Conference
(DAC), respectively. He is a member of the IEEE, OSA, and SPIE.

Steven P. Levitan received the BS degree from
Case Western Reserve University in 1972. He
received the MS degree in 1979 and the PhD
degree in 1984, both in computer science, from
the University of Massachusetts, Amherst. From
1972 to 1977, he worked for Xylogic Systems
designing hardware for computerized text pro-
cessing systems. He was an assistant professor
from 1984 to 1986 in the Electrical and
Computer Engineering Department at the Uni-

versity of Massachusetts. In 1987, he joined the Electrical and Computer
Engineering faculty at the University of Pittsburgh, where he is the John
A. Jurenko Professor of Computer Engineering in the Department of
Electrical and Computer Engineering and holds a joint appointment in
the Department of Computer Science. He is past chair of the ACM
Special Interest Group on Design Automation (SIGDA). He is a member
of the ACM/IEEE Design Automation Conference Executive Committee.
He is a senior member of the IEEE and a member of SPIE and OSA.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

304 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 3, MARCH 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

