
IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 32, NO. 2, JUNE 2017 737

System-Level, FPGA-Based, Real-Time Simulation
of Ship Power Systems
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Abstract—In this paper, we present a scalable approach for real-
time simulation of ship power systems with high-frequency power
electronics converters (100–200 kHz). The proposed approach is
based on the latency-based linear multistep compound method
and relies on field-programmable gate array (FPGA) execution.
Several examples of increasing dimension and complexity are used
to evaluate the scalability—both of in terms of computational de-
lay and of resources usage—of the proposed approach. Real-time
execution with a 50 ns time step is achieved for all the examples
considered.

Index Terms—Field-programmable gate arrays, parallel algo-
rithms, power system simulation, power electronics, real time
systems.

I. INTRODUCTION

R EAL time simulation, Hardware In the Loop (HIL) and
Power Hardware In the Loop (PHIL) techniques have been

widely used in the last twenty years to support design and anal-
ysis of ship power systems. By filling the gap existing between
field test and traditional simulation, HIL and PHIL approaches
significantly de-risk the development of new designs. In [1] and
[2], a high power PHIL set-up is used for the evaluation of
propulsion motor and motor drives. A HIL set-up in [3] is also
used for the testing of propulsion systems control. In [4], a HIL
set-up is used to evaluate a stabilizing control for MVDC ship
power systems. Still in relation to MVDC ship systems, a high
power PHIL set-up is used in [5] to evaluate the impact of fast
power transfer between dynamic loads and in [6] to test fault
management approaches. In [7] and [8], simulation methods for
execution of real-time simulation with very small time step have
been evaluated in the context of ship system simulation.

To be able to perform effective and accurate HIL and PHIL
tests, it is clear that real-time simulation execution at a proper
time step is necessary. The selection of the time step depends
on the dynamics of interest for the system simulated and for
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the device under test. The needs of using a very small time
step and to simulate large systems have always been the main
challenge of real time simulation. Over the last several decades,
a significant amount of research and effort has been focused
on parallelizing electromagnetic transient stability simulations,
mainly for real-time applications. Several approaches have been
developed based on latency effects (e.g., Bergeron line model)
and on tearing approaches (e.g., Diakoptics). In the area of ter-
restrial power systems, there has also been an increasing interest
– specifically with the US Department of Energy – in the paral-
lelization of transient stability simulation solvers. Historically,
one of the main interests for real-time simulation in the electrical
engineering field was the testing of relays for terrestrial power
systems [9], [10]. Starting in the same time, but with a significant
growth of interest in recent years, real-time simulation and HIL
methods for power electronic systems have attracted the interest
of both academia and industry. The strong nonlinear behavior
of the systems and the small time step size required for the sim-
ulation of power converters are the main challenges of real-time
simulation of power electronics systems. In the last few years,
there has been an increasing use of new computational units to
address these challenges: mixed solutions based on DSP/CPU
and FPGA devices are increasingly common. FPGAs are used
both as interface [11] and for computation: in [12]–[14] an AC
machine, a power converter and a nonlinear power transformer
are directly simulated on an FPGA. In [15], a Modular Multi-
level Converter (MMC) converter is simulated using an FPGA
in combination with a CPU. In [16], a MMC is simulated in real
time using an FPGA with the goal of performing hardware-in-
the-loop testing. In [17], the authors propose the use of an FPGA
implemented state space solver for the simulation of power elec-
tronics converters. In [18], a multi-FPGA platform is used for
the simulation for the real-time electromagnetic transient sim-
ulation of very large power systems. In [19], a test bench for
the HIL testing of electric vehicles is developed using FPGA
based real time simulation capability. In [20], a test bench for
the HIL testing of multiple-output power converters is realized
using an FPGA platform. In [21], a tearing approach is proposed
for the parallel execution of the simulation of power electron-
ics converter using and FPGA based platform. In [22], a mixed
solution based on CPU and FPGA is used to simulate a two-
terminal MMC-HVDC system. In [23], the real time simulation
of an MMC is executed on an FPGA platform including device
level details.In [24], an FPGA is used for the simulation of an
induction machine. In [25], the model of a permanent magnet
machines is executed on a FPGA platform for HIL testing.
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Ship systems are expected to make large use of high switching
frequency – 100-200 kHz – power electronic converters (e.g.,
SiC based). Commercial tools, however, do not yet systemati-
cally support scalable real-time simulation with very small time
steps – less than 100 ns – as required for simulation of high
switching frequency power electronics systems.

In [26], we developed and implemented a simulation method
that we named Latency Based Linear Multi-step Compound
Method (LB-LMC). The main idea of this method is to exploit
the small time step required for the simulation of high switching
frequency converter to decouple the solutions of non-linear com-
ponents from that of the rest of the system. In [26], we showed
several examples executed in real time on DSP and CPU with a
time step around 20µs.

In this paper, we introduce a modified version of the approach
proposed in [26] to execute on FPGAs and take full advantage of
the characteristic of these devices. Execution on FPGA devices
allows exploiting greater levels of parallelization than that on
previous platforms which create too much overhead in this re-
gard. Moreover, FPGA execution eliminates any system latency
typical of CPU based systems and offers a very high scalability.
Significant part of the paper is dedicated to explain how the
LB-LMC method has been implemented and on the challenge
associated with it. The developed method is tested on ship sys-
tem examples of different sizes to highlight the high scalability
obtained.

II. LATENCY BASED LINEAR MULTI-STEP COMPOUND

METHOD

The Latency Based Linear Multi-step Compound Method
(LB-LMC) is a highly parallelizable simulation method de-
signed for real-time simulation of dynamic electrical systems. In
this section, we provide a summary description of this method
which is detailed in [26].

The LB-LMC method is derived from the Resistive Compan-
ion (RC) method, solving dynamic systems as a set of linear
equations Gx = b every simulation time step, where G is the
conductances of the system, b is the current contributions of
components, and x is the node voltages of the system. In this
paper, we often use the term Resistive Companion to indicate a
generic method/solver similar to the ElectroMagnetic Transients
Program (EMTP). Unlike traditional RC method, the LB-LMC
method models all nonlinear components in a linear network
system as functional voltage sources with series resistance, as
seen in Fig. 1(a); or as current sources with parallel conduc-
tance, as shown in Fig. 1(b). These series resistances or parallel
conductances are held fixed and are inserted into the G con-
ductance matrix to stay with standard form of RC components.
The nonlinear behavior of the nonlinear components are then
reflected in the voltage or current source that is updated every
simulation step through an internal step that computes the state
equation of the component to update said source. The nonlinear
component state equations are expressed as:

dini
dt

= f(v, i, xn
i , un

i , t) (1)

Fig. 1. Linear networks with nonlinear components. (a) With two nonlinear
components. (b) With one current-type nonlinear component.

dvn
j

dt
= f(v, i, xn

j , un
j , t) (2)

where v is the vector of the network node voltages, i is the
vector of the network branch currents, xn

i is the vector of the
state variable internal to the i-th nonlinear component, and ui

is the vector of the input internal to the i-th nonlinear compo-
nent. Components with multiple terminals can be described by
a mix of these current and voltage sources. These equations are
explicitly discretized to obtain:

In
i (k + 1) = f(v(k), i(k), xn

i (k), un
i (k), k) (3)

V n
j (k + 1) = f(v(k), i(k), xn

j (k), un
j (k), k) (4)

Since the state equations for In
i and V n

j are explicitly discretized
and only depend on the solutions from previous time step, and
the equations are independent from one another, each nonlinear
component can perform its internal step in parallel to other
components. From these state equations, the source contribution
vector b can be updated and the system solution each time step
can be found with:

Gx(k + 1) = b(v(k), i(k), In (k), V n (k), k) (5)

From having the conductance matrix G held constant due to
consisting of only fixed conductances, LU factorization for the
LB-LMC method system solver can be performed offline, and
only forward and backward substitution to solve the system is
performed each time step.

Fig. 2 shows the solution flow for LB-LMC. In this flow,
G, x, and b are built from initial conditions and the LU fac-
torization of the conductance matrix is performed. Once all
non-linear components are initialized, the simulation loop be-
gins. Each iteration consists of each component performing its
own internal step in parallel, then the source vector b is updated.
From the updated b vector, the system solution x is computed
via forward and backward substitution and saved for the next
step. The simulation loop continues until final simulation time is
reached.

The most important characteristic of the proposed approach
is the use of explicit integration for the non-linear components,
while the linear part of the network is integrated using an im-
plicit numerical method. While the use of a Linear Multi-step
Compound method offers always better accuracy and stability
property than the worst of the integration methods used, at the
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Fig. 2. LB-LMC solution flow.

same time the use of an explicit integration algorithm always im-
plies some concern related to stability and accuracy. In [26] —
where we first presented the method — we performed a complete
stability analysis of the proposed method. We showed several
examples related to power electronics systems and multi-physic
applications and most important we showed how for power
electronics system the selection of the time step is driven by the
switching frequency of the converters and not by the stability
and accuracy limit of the proposed LB-LMC approach.

III. FPGA ENCAPSULATION

In this section, the encapsulation of the LB-LMC method
elements for FPGA implementation is explained.

A. Component Entities

For each nonlinear component type used to model a system,
a FPGA entity is developed. As input, these component entities
take the system solution computed in a previous time step. Along
with system solution, component entities can also take other
input signals to control behavior of the entity, such as switch
controller signals for a DC/AC converter component. At the
beginning of each time step, the component entities sample and
register their inputs. From these inputs and past internal states,
the components perform their internal step for (3) and/or (4) and
compute their source contributions.

The component entities perform computational operations
for their internal step in a non-pipelined, dataflow (data-driven)
manner. In this manner, all internal step operations are imme-
diately executed in response to any changes in the component
entity inputs, or in the results passed between operations. More-
over, these operations are all performed in parallel to one an-
other, no matter the dependency between operations. Due to
this execution flow, internal step operations never wait on pre-
requisite operations to finish to begin their own execution, the
operations converging to correct results as prerequisite ones
complete. All internal step operations of a component are ex-
pected to complete with correct results within a single pass
before new inputs are registered.

An example component entity for a DC/AC converter (see
Fig. 8) is depicted in Fig. 3. The DC/AC converter entity takes
five inputs that are the DC bus and AC phase voltages on

Fig. 3. Example of DC/AC converter component entities.

the terminals of the converter, and three switch control inputs
to control the output phase modulation. Each time step, the
component will register its past states and inputs from step k
then use these to execute its internal step. The internal step for
the converter involves handling the switching action of the con-
verter through toggling bus capacitor voltages and filter induc-
tor currents (a, b, c, ac1 , bc1 , cc1 , etc.) and computing the said
capacitor and inductors states for the current time step k + 1.
The source contribution computational step (dashed block) com-
putes the source currents for the bus capacitors and feeds these
currents and the inductor currents out as the contribution output.
Using dataflow execution in the DC/AC converter entity, all of
the internal step operations, as depicted in Fig. 3, are executed
in parallel, propagating results to dependent operations without
wait until the source contributions of the component converge
to correct results in a single pass.

B. System Solver Entity

A dedicated system solver FPGA entity is created to compute
the system solution. This solver entity takes as input the compo-
nent source contributions and accumulates these contributions
together to create the whole source vector b used to compute the
system solution. The entity provides the system solution vector
x as output which are fed back to component entities as input
for the next time step execution.

Unlike the original LB-LMC method, the system solver
entity does not use forward-backward substitution for system so-
lution computation. Instead, this entity uses an inverted conduc-
tance matrix precomputed offline and multiple algebraic sum of
product (SOP) expressions to find the system solution. In this
approach, the system solution is found by solving (5) for the
vector x like in (6), where A is the inverted G conductance
matrix (A = G−1).

b = f(v(k), i(k), In (k), V n (k), k)

x(k + 1) = Ab (6)

This solution is computed by expanding the multiplication
between A and b matrices into SOP expressions, like seen in (7),
which are to be each computed individually from one another.
Since the inverted conductance matrix is fixed, the A terms in the
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Fig. 4. Separation of subsystems.

SOP expressions can be defined as constants in said expressions.

x = Ab ⇒

A11b1 + A12b2 + · · · + A1nbn

A21b1 + A22b2 + · · · + A2nbn

...

An1b1 + An2b2 + · · · + Annbn

(7)

One main benefit of using this approach over forward-backward
substitution is division operations are not required in calcula-
tions which tend to be computationally more expensive time-
wise and use more FPGA resources compared to addition and
multiplication operations. Moreover, this approach has only
SOP expressions for the system that can be solved for sys-
tem solution elements in parallel. A disadvantage to using this
approach is that since the A matrix is precomputed offline and
the SOP expressions are dependent solely on the system being
modeled, the system solver entity and its expressions will have
to be recreated or modified for each new system that is to be
simulated.

IV. SYSTEM SOLVER REALIZATION

In this section, we detail how the system solver can be de-
signed to realize desired FPGA resource usage and computa-
tional latency.

A. Subsystem Decomposition

Due to how the nonlinear behavior of components is moved
to the source contribution computations from the conductance
matrix in LB-LMC, it is possible to have multi-terminal com-
ponents modeled as separate elements whose conductances are
independent from one another. Then, the elements’ behavior is
coupled together via the component’s internal step to properly
model the whole component. For example, if we consider the
three phase DC/AC converter discussed in Section III, from a
system solver point of view the converter reduces to a set of
voltage and current sources, as seen in Fig. 5. A component like
this may lead to a global conductance matrix that is block diag-
onal with up to six different blocks, even if this is not typically
the case because other components may create links between
the different subsystems; at the least, fewer diagonal blocks are
obtained. It is important to underline that in any case the user is

Fig. 5. DC/AC converter system solver structure.

never involved in this process. To help the reader understand the
practicality of this approach in real system models, we indicate
in Section VIII how many subsystems are obtained for each of
the models considered. From exploiting this possible separation
of elements, the overall system model is expressed to contain
independent subsystems which appear as independent diagonal
blocks on the conductance matrix. A subsystem solver can be
created from each diagonal block matrix and operated sepa-
rately to compute a sub-vector of the solution. These subsystem
solvers can be encapsulated into the top level system solver. The
impact of using subsystem solvers is that the number of terms
per system solution equation can be reduced substantially, low-
ering amount of FPGA hardware resources required.

An example of this subsystem separation for a 12-node system
is shown in Fig. 4. In this example, the system has two 4-node
subsystem blocks and four 1-node blocks. If this system was
solved without subsystem decomposition, 144 multiplications
and 132 additions would be needed. However, with the decom-
position, the operations are reduced to 36 multiplication and 24
additions, significantly reducing resources needed for the sys-
tem solver. The shipboard power system models we present in
this paper are expressed with a similar structure as this example.

B. System Solver Architecture

The system solver is implementable using two types of ar-
chitecture: dataflow execution that solves solution equations
in parallel, data-driven manner within one pass, and multi-cycle
execution which solves solution equations sequentially in multi-
ple iterations within single time step. These architecture designs
are explained below.

1) Dataflow Execution: In the dataflow implementation, the
system solver solves all of its SOP solution equations entirely in
parallel using a data-driven approach. All solution equations
are each given dedicated computational units, composed of
combinational multiplier and adder units on the host FPGA,
which operate independently from each other. As component
source contributions are provided to the system solver, the com-
putational units will compute the system solutions immedi-
ately without the need to wait on any control or clock signal
to initiate the computations; only the input contributions are



MILTON et al.: SYSTEM-LEVEL, FPGA-BASED, REAL-TIME SIMULATION OF SHIP POWER SYSTEMS 741

Fig. 6. Simulation engine.

required to start computation. This approach allows solutions to
be produced without delays induced from performing clocked
operations sequentially.

2) Multiple Cycle Execution: Another approach to imple-
menting the system solver is to have it compute the system
solution within multiple clock cycles per time step. In this ap-
proach, the solution equations are broken up into like operations.
These like operations are then executed sequentially, with a set
number of operations executed per clock cycle. After all opera-
tions of the solution equations are executed over multiple clock
cycles, the results of each operation are compiled or accumu-
lated to reach the complete system solution. The equation oper-
ations are performed by computational units which are reused
every clock cycle as the operations are expected to be identical
but with different inputs. The reuse of the same computational
units every iteration allows reduction of FPGA resource usage
for larger system models though at the expense of additional
computational latency per time step from executing operations
sequentially.

An effective usage of multi-cycle execution is to iterate the
solving of each subsystem block in a model. With such a setup,
each subsystem block is solved each cycle of the system solver.
If a model has sizable but few subsystem blocks, then using
same subsystem solver and iterating it per subsystem can no-
ticeably reduce resource usage while maintaining low enough
clock latency for nanosecond-range time steps.

V. SIMULATION ENGINE COMPOSITION

This section provides explanation of how the entity encapsu-
lations of the components and system solver are linked together
on FPGA hardware to perform simulations.

To perform simulation of a system with the FPGA-adapted
LB-LMC method, a simulation engine like seen in Fig. 6 is
composed, consisting of multiple component entities and one
system solver entity tailored to the system simulated. In the
engine, a component entity for each nonlinear component of the
system is instanced and their source contribution outputs are

Fig. 7. Finite state machine for multi-cycle simulation engine.

linked to the appropriate inputs of the instanced system solver
entity. The system solution output of the system solver is fed
back to the component entities’ inputs, the components taking
solution elements that corresponds to their model terminals.
If component entities require input from peripherals such as a
switch controller, the appropriate FPGA elements are added to
the design and linked to the requiring component entities.

The execution scheduling of the simulation engine depends
on whether the dataflow or multi-cycle system solver is used:

A. Single Pass With Dataflow System Solver

In use of the dataflow execution system solver, the simulation
engine execution is performed in one pass, bounded to a system
clock whose period is equal to the simulation time step. On the
start of the time step, the component entities sample their inputs
for the system solution from past time step and any peripheral
inputs. Then, the components perform their computations. As
source contributions’ values are computed, the dataflow system
solver will immediately compute the current time step system
solution without wait. The choice of time step clock period is
selected to be greater than the computational time needed by the
simulation engine for stable operation.

B. Multiple Passes With Multi-Cycle System Solver

For the simulation engine using the multi-cycle solver, the
composition of the engine is similar to the single pass design,
but multiple clock cycles are required to compute a system
solution per time step period. The component entities will need
only a single clock cycle to compute their solutions as they
are designed to compute the results in dataflow manner within a
single pass. Moreover, these component entities need to compute
their solutions before the solver can begin. As such, a finite
state machine is required to synchronize the execution of the
component and system solver entities to one another and to
the simulation time step. This finite state machine is created to
have the component entities solve their contributions first, and
then allow the system solver to compute the system solution.
Once the system solution is computed, the state machine has
the engine wait until the beginning of the next time step period.
This state machine driven operation is shown in Fig. 7. The
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bounding of the entities’ solution computation to each engine
state is done through use of start input signals of each entity
which is triggered by the state machine during each state.

VI. FPGA IMPLEMENTATION

We discuss in this section the implementation of the LB-
LMC simulation engines in regard to how computation execu-
tion is scheduled for parallelism and how numerical quantities
are stored and processed.

For high scalability of performance of the LB-LMC method
on FPGAs, the parallelism of FPGA hardware is exploited to ac-
celerate computations. To utilize this high parallelism, all equa-
tion computations in component entities are expressed to be
executed independently where possible, allocated to dedicated
arithmetic units for each equation so that they can be solved in
parallel. Furthermore, to avoid serial data paths in component
entity computations, solution equations are expressed to avoid
dependencies between one another where allowed by the com-
ponent’s model and solution integration method. Furthermore,
all component entities are instanced with independent hardware.

Parallelism is also exploited in the system solver. For the
dataflow solver, all system solution equations like seen in (7)
are expressed to have dedicated arithmetic hardware provided
to each one so they can be scheduled to run simultaneously.
Moreover, the equations are implemented in dataflow manner,
as discussed before, in the form of pure combinational logic
composed of Lookup Table (LUT) and DSP slices which com-
pute new solutions as soon as source contribution results change.
This execution manner allows solutions to be computed as soon
as possible without having to wait for all source contributions to
be computed by the component entities. In the multi-cycle sys-
tem solver, the solution equations, though terms are looped, are
also all implemented with separate hardware as well. Due to the
repeated use of the arithmetic hardware in the multi-cycle solver
for each solution equation during each time step, this hardware
is pipelined to reduce number of cycles needed to reach a solu-
tion to be equal to number of terms per equation plus any cycles
needed to fill the pipelines.

So that computational delays for the component entities and
system solver is reduced and mostly dependent on the low
propagation delays of the FPGA primitives, fixed-point arith-
metic logic is used instead of floating-point logic for all cal-
culations performed within. Common floating-point arithmetic
implementations, such as IEEE 754, typically require complex,
high-latency, pipelined operations to handle their sophisticated
formats. Fixed-point arithmetic logic, on the other hand, can be
easily created with simpler combinational logic for integer arith-
metic which does not require pipelining. Due to not needing to
be clocked or pipelined to produce an output, fixed-point com-
putational delay can depend almost solely on propagation delay
of the comprised logic primitives. Since fixed point arithmetic
hardware is much simpler than floating point hardware, these
propagation delays can be kept low. Moreover, many FPGA
platforms have built-in integer DSP slices or blocks which can
be applied to accelerate operations and reduce delays of in-
teger and fixed-point arithmetic. The main downside to using

fixed-point arithmetic is limited numerical precision compared
to floating point, which can adversely affect numerical stability
and accuracy. However, this limitation can be alleviated with
careful selection of integral and fractional bit widths for fixed
point signals within a simulation, giving numerical accuracy
comparable to use of floating point arithmetic.

VII. SCALABILITY

This section discusses the scalability of the FPGA implemen-
tation of the LB-LMC solver as model size increases, in terms of
achievable time step (computation delay), clock cycle latency,
and FPGA resource usage.

A. Components

The number of operations required to compute the internal
states and source contributions of a component is largely de-
pendent on the component model and integration method used.
However, the total number of operations required for a collec-
tion of components of same model and type will scale linearly as
more components of same type are instanced in a simulation en-
gine. This linear scaling of operations also applies to resource
usage as each operation of same type uses similar amount of
resources. Though resource usage will increase linearly with
number of components, the computational delay for all compo-
nents of same type to perform their operations will stay constant
due to the parallel operation of said components.

B. Dataflow System Solver

As the size of a modeled, independent system or subsystem
grows to n solutions, the number of operations required for the
solver grows by an order of 2, with number of multiplications
needed being n2 , and additions being n(n − 1). If each opera-
tion type (multiplication or addition) is mapped to unchanging
FPGA resources without any FPGA synthesis optimizations,
the amount of resources needed for the dataflow will also grow
by an order of 2 as well. Due to this growth of resources, the
system solver can act as a bottleneck that determines how large
of a model and its simulation engine can fit on a given FPGA
device. To reduce number of operations and FPGA resources
in the dataflow system solver, the modeled system is broken up
into subsystems where possible and each subsystem is given its
own solver with reduced size n.

The computation delay of the dataflow system solver will
grow sublinearly as a model size increases due to the multipli-
cation and addition operations performed in parallel, dataflow
manner on FPGA hardware. This scaling is unlike a traditional
CPU or DSP whose computational time or delay for the solving
of these system equations will grow with an order of 2 as the
number of solutions increases, due to performing all operations
sequentially.

C. Multi-Cycle System Solver

The number of operations implemented in hardware of the
multi-cycle system solver is inversely proportional to the num-
ber of iterations selected for the solver to compute a solution.
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Resource usage will scale similarly, though extra resources are
required to enable multi-iteration computation and pipelining.
Computational time of the system solver is a function of cycles
needed for the solver to reach solution, where the time is a prod-
uct of the number of cycles, including extra cycles for pipeline
priming, and the clock period used.

D. Simulation Engine Time Step and Computation Delay

The time step usable for the simulation engine is dependent
on the computational delay and latency of the components and
system solver. With the dataflow system solver, the time step
must be greater than the sum of computational delay required
for the slowest component entity type and the delay needed for
the system solver to have all solutions computed and stabilized;
this sum being the total computational delay of the simulation
engine:

Δt > tsolver + tcomp delay (8)

For larger system models, it is expected that the simulation
engine computational delay will be dominated by the system
solver delay as component model entities’ delays do not grow
with system size and expected to typically be small in compu-
tational complexity. To greatly reduce system solver delay, and
reduce time step, subsystem decomposition can be used within
the system solver as noted before.

In the case of using a multi-cycle system solver, the system
solver will again greatly influence the time step for the simu-
lation engine due the solver’s need for multiple cycle latency
needed to reach the system solution each time step. The compu-
tation time of the simulation engine will be the number of cycles
needed for system solver to reach solution times the clock period
used to clock the solver, plus the delay needed for the slowest
type of component entities to perform their operations. From
this relation, the time step will have to be:

Δt > nsol cyclestclk + tcomp delay (9)

Reduction of multi-cycle system solver latency, and in turn the
time step, can be achieved through reducing the number of
cycles needed to compute the solution through performing more
system solution equation operations per cycle, or to an lesser
effect, reduce the clock period. In either case, the tradeoff is
higher usage of FPGA resources.

VIII. TEST MODELS

In this section, the power electronic system models used to
evaluate the LB-LMC FPGA simulation engine is discussed.
Each model is of increasing size and complexity.

A. Three-Phase DC/AC Converter

A three-phase DC/AC converter, depicted in Fig. 8, is mod-
eled in LB-LMC method using parameters seen in Table I. The
converter operates with 12 kV DC input. Switching frequency
for the converter is 100kHz. The switching devices are mod-
eled using a switching function approach similarly to what is
described in [27]. The component entity of the converter model

Fig. 8. Three phase DC/AC converter.

TABLE I
DC/AC CONVERTER MODEL PARAMETERS

VD C CD C B u s LF i l t e r CF i l t e r RL o a d

12000 0.001 0.0001 1.0e-6 7.0

Fig. 9. Single bus shipboard power system.

separates its internal elements into independent subsystems to
allow subdividing the system solver into smaller block solvers,
though the elements are coupled analytically through the inter-
nal step equations. Overall system has five node voltage solu-
tions to solve, each associated with a 1-node subsystem block.
During the Component Solving state in Fig. 7, the internal equa-
tions of the three phase DC/AC converter are updated together
with the voltage and current across and through the other dy-
namic components of the circuit. In the System Solving state,
the node voltages are obtained using the approach described in
Section III-B and using the equivalent circuit of Fig. 5 for the
AC/DC converter.

B. Single Bus Shipboard Power System

A single-bus power system found on ships, shown in Fig. 9,
is modeled using same converter model and parameters as the
three-phase converter system, with other parameters chosen to
have total system operate with 40 MW load. This system con-
tains three converters and uses a straight DC input source of
12 kV. The overall system has 23 node voltage solutions to
solve, and consists of two 7-node subsystem and nine 1-node
subsystem blocks.

C. Dual Bus Shipboard Power System

A dual-bus shipboard power system, displayed in Fig. 10, is
similar to the single-bus system, but is composed of six DC/AC
converters and two DC/DC converters. Parameters for this sys-
tem is set for 40MW load and the DC/DC converters are set to
output 12kV DC voltage onto bus lines. The overall system has
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Fig. 10. Dual bus shipboard power system.

Fig. 11. Top level design for simulation platform.

54 nodes, and consists of two 16-node subsystem and twenty-
two 1-node subsystem blocks. Similar to what was indicated for
the DC/AC converter case, the power converter internal equa-
tions and current/voltage across/through operations are updated
in the Component Solving state depicted in Fig. 7.

IX. IMPLEMENTATION RESULTS

In this section, we reveal results taken from separate LB-
LMC FPGA simulation engines modeling in real-time the three
power electronic systems discussed in Section VIII. All models
were run at 50 ns time step, using the dataflow system solver.
Resource usage and clock cycle latency of the dual-bus power
system simulation engine using the multi-cycle system solver is
also presented.

A. Setup

For all three models, the same top-level FPGA design was
used, shown in Fig. 11. The simulation engine was developed
in C++ under Xilinx Vivado HLS 2015.4, and the complete top-
level design was composed in standard Vivado using VHDL for
the Xilinx Virtex-7 VC707 FPGA evaluation board. The FPGA
was provided a 200 MHz (5 ns) clock source to serve as pri-
mary clock for all internal logic. This clock source was divided
down to a 50 ns clock within the top-level design to drive the
simulation engine. All numerical operations in the simulation
engine were performed with fixed point logic defined with HLS
ap_fixed library, using 72-bit width with 43-bit fractional pre-
cision. The engine controller seen in Fig. 11 handles the start
and reset of the simulation engine, as well as the wait state
of the simulation engine’s finite state machine when using a
multi-cycle system solver. All models were run with open-loop
switching control to minimize impact of correcting control ac-
tion on simulation results.

TABLE II
MODEL ERROR

Three-Phase
Inverter

Single-Bus
Shipboard System

Dual-Bus Shipboard
System

C++ LB-LMC (%) 85.97e-06 0.0087 0.0141
Traditional RC (%) 1.0034 0.6545 0.5221

Fig. 12. Error comparison for three phase inverter.

B. Simulation Accuracy and Error

To validate the accuracy of the results for each model, all
system solution results, logged from the RTL-simulation of each
model simulation engine design, is compared for error to a
pure C++ implementation of the LB-LMC solver running at
same time step length, using double precision floating point
data type. Moreover, error comparison is made to a traditional
resistive companion-based simulator running with 500 ps time
step. The error, shown in Table II was computed using two-norm
(Euclidean) error equation, expressed here:

error% =
‖x̂ − x‖2

‖x‖2
100% (10)

where x̂ is a matrix of all solutions taken over a 50 ms simula-
tion time period from the simulation engine and x is the matrix
of all solutions from the reference solver in same time frame.
As can be seen from the table, going to fixed point from double
floating point data type has minimal impact on the the accuracy
of the solver implementation, with error around 0.1 percent and
below. Compared to the traditional RC solver (EMTP), some
accuracy is lost from applying LB-LMC solver. However, accu-
racy between solvers is still reasonably similar, with percentages
of around one percent and less. To better appreciate the impact
of the LB-LMC solver on simulation accuracy, we compare the
results obtained using the LB-LMC with the one obtained using
a traditional RC solver (EMTP) in Fig. 12. For this compari-
son, we used the DC bus and phase A voltages on the second
converter of the single bus shipboard power system example.

C. Scalability

The FPGA resource usage and per-time-step computation
delay of the simulation engine of each test model was cap-
tured from reports given after full implementation from Vivado,
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TABLE III
RESOURCE USAGE AND COMPUTE DELAYS

Three-Phase
Inverter

Single-Bus
Shipboard System

Dual-Bus Shipboard
System

Time Step (ns) 50.0 50.0 50.0
Compute Delay (ns) 42.8 48.3 48.7
DSP 170 (6.1%) 712 (25%) 1884 (67%)
LUT 3943 (1.3%) 32558 (11%) 87525 (29%)
FF 893 (0.1%) 3637 (0.6%) 8932 (1.5%)

Fig. 13. Single-bus power system analog output.

results shown in Table III, with percentage of Virtex-7 FGPA
resources used in parentheses. Results from the engine only
are shown, not of the complete top-level design with peripheral
hardware. As can be seen from the results, the computational
delays stayed low enough to allow the small time step to be used
for each model in real-time, despite large growth in model size.
Total resource usage scaled approximately linearly. Much of the
resource usage increase between models is from the increase
in number of component entities whose resources scale almost
linearly with amount of components of each type. Applying the
subsystem decomposition for the system solver allows the re-
source usage there to increase more linearly in the case of these
models, compared to increasing by an order of two without
subsystem break-up.

D. Real-Time Performance

The FPGA implementation is capable of simulating the pre-
sented power systems with a time step of 50 ns in real-time as
seen in Table III.

E. Demonstration

The simulation engine designs of the two shipboard systems
are loaded onto the VC707 FGPA board and analog output of
each model was captured, via an oscilloscope, from their respec-
tive engine; results seen in Figs. 13 and 15. For the single-bus
system model results, three AC output phases from one of the
DC/AC converters is shown. The dual-bus system results dis-
play two of the output phases and the positive and negative DC
bus line voltages. The results for the single-bus system were
captured while switch control for the DC/AC converters was
set to reduce phase output voltage by half suddenly. In Fig. 14,
we report a zoom of the associated transient. Similarly, the

Fig. 14. Single-bus power system analog output, phase 1 zoom.

Fig. 15. Dual-bus power system analog output.

dual-bus system results were captured while the switch control
of the DC/DC converters powering the system was set to re-
duce bus voltage to simulate sudden drop in DC/DC converter
voltages. Ringing in the dual-bus system voltages is consistent
with traditional RC version of said system, and is expected
due to operating without closed-loop control to correct for the
oscillations.

F. Multi-Cycle System Solver Resource Usage

To evaluate impact on resource usage from using a multi-
cycle system solver with subsystem iteration, the system solver
for the dual-bus shipboard system was implemented in Vivado
with the dataflow design and the multi-cycle design for a 50 ns
clock cycle, where the dataflow is expected to compute its solu-
tion before 50 ns while the multi-cycle design is clocked every
50 ns. Each version of the solver was implemented separate
from the top-level design so that the resource usage reports
shown the system solvers’ usage only. The multi-cycle version
was designed to use same subsystem solver unit for the two sub-
systems in the shipboard system and compute all solutions and
be prepared to receive new source contribution inputs within
two cycles; effectively doubling the feasible time step. Both
versions solved the 1-node subsystems all in parallel to the sub-
system computations. The resource usage of the two system
solver architectures and their usage percentage on the Virtex-7
FPGA is shown in Table IV. As can be seen from the results,
using the multi-cycle design reduced DSP and LUT usage of
the total system solver by approximately 33-36% compared to
the dataflow design while still allowing the simulation engine
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TABLE IV
RESOURCE USAGE FOR MULTI-CYCLE SYSTEM SOLVER

Dataflow Multi-Cycle

Cycles 0 2
DSP 724 (26%) 466 (17%)
LUT 54172 (18%) 36349 (12%)
FF 0 (0%) 3830 (0.6%)

to perform with a reasonable 100 ns time step. Though not an
one-to-one tradeoff between latency and resource usage, this
resource reduction is significant enough to highlight that this
multi-cycle approach can enable simulation engines of large
models to potentially fit on a given FPGA where resource us-
age of a dataflow solver may not allow. Flip-flop usage went
up from needing to maintain memory for the iterations of the
multi-cycle architecture, but usage percentage on the Virtex-7
is insignificant at below one percent.

X. CONCLUSION

This paper presents the FPGA implementation of the LB-
LMC method for scalable, real-time simulation of ship power
systems. Using the parallelism and low-latency of FPGA de-
vices, the adapted LB-LMC method is able to simulate power
systems of dramatically increasing size while still maintaining
effective scaling of computational delays to realize constant time
step of 50 ns. Despite maintaining scalable time steps, FPGA
resource usage is still a concern for larger system models which
can be compensated for through use of subsystem decomposi-
tion allowed by the LB-LMC method. As is seen in the results,
the use of a multi-cycle solver can also reduce hardware usage
at cost of increased computational time and time step, though
challenges exist to implement the multi-cycle architecture to
have one-to-one or better trade-off between resource usage and
computational time. While the LB-LMC FPGA implementation
performs well, modeling accuracy is not sacrificed as simulation
results deviated little from that of traditional resistive companion
method solvers.
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