
�

�

�

�

�

�

�

�

2

An FPGA-Based Accelerator for Frequent Itemset Mining

YAN ZHANG, FAN ZHANG, ZHEMING JIN, and JASON D. BAKOS
University of South Carolina

In this article we describe a Field Programmable Gate Array (FPGA)-based coprocessor architecture for
Frequent Itemset Mining (FIM). FIM is a common data mining task used to find frequently occurring
subsets amongst a database of sets. FIM is a nonnumerical, data intensive computation and is used in
machine learning and computational biology. FIM is particularly expensive—in terms of execution time
and memory—when performed on large and/or sparse databases or when applied using a low appearance
frequency threshold. Because of this, the development of increasingly efficient FIM algorithms and their
mapping to parallel architectures is an active field. Previous attempts to accelerate FIM using FPGAs have
relied on performance-limiting strategies such as iterative database loading and runtime logic unit recon-
figuration. In this article, we present a novel architecture to implement Eclat, a well-known FIM algorithm.
Unlike previous efforts, our technique does not impose limits on the maximum set size as a function of avail-
able FPGA logic resources and our design scales well to multiple FPGAs. In addition to a novel hardware
design, we also present a corresponding compression scheme for intermediate results that are stored in on-
chip memory. On a four-FPGA board, experimental results show up to 68X speedup compared to a highly
optimized software implementation.

Categories and Subject Descriptors: B.1.2 [Control Structures and Microprogramming]: Control
Structure Performance Analysis and Design Aids—Automatic Synthesis; B.2.4 [Arithmetic and Logic
Structures]: High-Speed Arithmetic; B.5.2 [Register-Transfer-Level Implementation]: Design Aids—
Automatic synthesis; B.7.1 [Integrated Circuits]: Types and Design Styles—Algorithms implemented
in hardware; C.1.3 [Processor Architectures]: Other Architecture Styles—Data-flow architectures,
Heterogeneous (hybrid) systems, Pipeline processors

General Terms: Performance

Additional Key Words and Phrases: Frequent itemset mining, data mining, Eclat, data intensive,
co-processor, high performance computing, reconfigurable applications, reconfigurable

ACM Reference Format:
Zhang, Y., Zhang, F., Jin, Z., and Bakos, J. D. 2013. An FPGA-based accelerator for frequent itemset mining.
ACM Trans. Reconfig. Technol. Syst. 6, 1, Article 2 (May 2013), 17 pages.
DOI:http://dx.doi.org/10.1145/2457443.2457445

1. INTRODUCTION

Advancements in semiconductor technology, the increasing prevalence of mobile pro-
cessing and data capture, and the decreasing cost of storage has made large-scale
databases increasingly common. For example, web logging, credit card transactions,
and genomic sequencing can quickly generate gigabyte- to terabyte-sized datasets. The
need for data mining techniques that can process large datasets is becoming increasing
urgent.

This work is supported by the National Science Foundation, under grant CNS-0844951.
Authors’ address: Y. Zhang, F. Zhang, Z. Jin, and J. D. Bakos, Department of Computer Science and Engi-
neering, University of South Carolina; email: jbakos@cse.sc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1936-7406/2013/05-ART2 $15.00
DOI:http://dx.doi.org/10.1145/2457443.2457445

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

2:2 Y. Zhang et al.

Correlation-based data mining is a common method to extract information from
large-scale databases. A common example is frequent itemset mining (FIM) or as-
sociation rule mining. Social networking sites use FIM to suggest friends and serve
advertisements to users [Fukuzaki et al. 2010]. In a more widely cited example, super-
markets use FIM to determine which products are often purchased together. A popu-
lar anecdote describes how one supermarket used FIM on their transaction database
and was surprised to discover that customers who purchased diapers were more likely
than other customers to also purchase beer [Witten and Frank 2005]. The supermarket
later concluded that this behavior was caused by husbands who purchase beer after
being sent out at night by their wives to purchase diapers. Discovering the relation-
ship among purchased items can help supermarket management develop promotions
and decide which items to place together on the shelf.

FIM is an expensive computation when the input data set is very large or sparse or
when performed using a low frequency threshold. As such, there is a need for optimized
FIM techniques, including the implementation and optimization of FIM algorithms for
parallel and heterogeneous processing platforms. In this article, we implement FIM on
an FPGA-based coprocessor. FPGAs are widely used to accelerate scientific and media-
related applications, such as numerical linear algebra [Zhou and Prasanna 2008], sig-
nal processing [Heighton et al. 2006], and biological sequence alignment [Alachiotis
et al. 2011], but are less commonly used for graph-based applications such as frequent
itemset mining.

We summarize the contributions of this work as the following.

— As far as we know, this is the first FPGA implementation of the Eclat FIM
algorithm.

— Our accelerator can handle large datasets without iterative database loading or logic
reconfiguration required by previous FPGA FIM designs.

— Our accelerator design employs a novel on-chip caching and associated data com-
pression technique to reduce frequency of off-chip accesses for intermediate results.

— Our design is scalable to multiple FPGAs.

This remainder of this article is organized as follows. Sections 2 and 3 introduce the
background and related work. Section 4 presents the algorithm and the data structure
used in our design. Section 5 describes our accelerator design. Section 6 describes a
compression scheme designed to take advantage of on-chip memory. Section 7 lists our
experimental results and Section 8 concludes the article.

2. BACKGROUND

2.1. Problem Formulation

Using a supermarket metaphor, items represent merchandise—individual items for
sale. A transaction, sometimes called a basket, is a receipt, or a combination of items
purchased together. An itemset is a subset of the items that appear on enough receipts
to exceed the specified threshold. The threshold is often expressed as a percentage of
the total number of transactions. For example, a threshold of 0.02 would mean that any
item appearing in at least 2% of all transactions is considered frequent. The computa-
tional cost of FIM grows as the threshold is decreased. Regardless of implementation,
the results given by any traditional FIM algorithm is always exact given a specified
dataset and threshold. Most FIM algorithms find frequent itemsets by searching for
small-sized frequent itemset candidates and then iteratively growing the candidates
to search for larger ones. The FIM algorithm Apriori adopts this approach.

FIM implementations generally sort the transactions in the database according to
item number, as this generally results in more performance gain than sacrificed in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

An FPGA-Based Accelerator for Frequent Itemset Mining 2:3

the cost of sorting. This simplifies the FIM algorithm and allows duplicate items to be
easily filtered out.

2.2. FIM Algorithms

Frequent itemset mining algorithms have long been a subject of study. In 1993 Agrawal
et al. introduced the problem [Agrawal et al. 1993] and later published a seminal paper
in which they developed a FIM algorithm named Apriori [Agrawal and Srikant 1994].
Apriori consists of iteratively performing three stages: candidate generation, sup-
port counting, and candidate pruning. Apriori uses a breadth-first search to traverse
the space of itemset candidates, where each level of the tree represents an itemset
generation.

Since its introduction, there has been continued work to develop faster algorithms
based on Apriori [Bodon 2006; Goethals and Zaki 2003]. Most of those are based on
improving the central data structure for storing candidate itemsets such as the hash
table and trie. Bodon showed that the trie approach outperforms the hash table in
terms of running time, memory requirements, and sensitivity to parameters [Bodon
and Ronyai 2003]. Bodon went on to develop a trie-based implementation [Bodon and
Ronyai 2003] that outperformed the Apriori of Borgelt [2003] and Goethals and Zaki
[2003].

The Eclat algorithm was first introduced by Zaki for FIM [Zaki 2000]. Unlike Apri-
ori, it uses a depth-first traversal to search the candidate space recursively. However,
Eclat does not store candidates so no trie structure is necessary. Eclat is more efficient
in memory and provides better performance compared to Apriori.

FP-growth is another popular FIM algorithm introduced by Han et al. [2000].
FP-growth compresses the database into a data structure called a Frequent-Pattern
tree (FP-tree) to avoid repetitive database scans, requiring only two scans of the
database. Unlike Apriori, FPGrowth does not perform candidate generation and sup-
port counting. However, its disadvantage is that the FP-tree can grow very large. This
makes FPGrowth an extremely fast algorithm but its high memory requirement makes
it impracticable for large databases.

3. RELATED WORK

There are several examples in the literature of FPGA-based accelerators for FIM. Per-
haps the earliest was an Apriori implementation that mapped Apriori to a systolic
array [Baker and Prasanna 2005]. In the systolic array, each processing unit has three
different modes corresponding to the three tasks in Apriori: candidate generation, can-
didate pruning and support counting. This is an elegant solution and maps naturally
to an FPGA. However, because there is not enough storage on the FPGA to store all
candidates for any realistically sized input size, multiple passes of the algorithm are
required to process the dataset. Also, the FPGA must be reconfigured after each pass.
The overhead of reprogramming is significant, especially for large datasets. In a later
version, the same authors improved the most time-consuming stage, support counting,
by introducing Content Addressable Memory (CAM) [Baker and Prasanna 2006]. The
bitmapped CAM can parallelize support counting because a multiple-item set can be
compared in single cycle instead of multiple cycles as in the earlier paper. Although
this approach improved performance, it still requires multiple iterations.

Wen et al. developed an accelerator to address the reconfiguration and multiple-pass
problem, using the DHP algorithm [Park et al. 1997] to develop a hash-based systolic
architecture [Wen et al. 2008]. Specifically, they used a systolic array for support count-
ing and candidate generation but added a trimming filter and a hash table filter. The
hash table is used to speed up the candidate pruning and the trimming filter is used
to trim the transaction set and reduce its size after each pass. With the help of both

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

2:4 Y. Zhang et al.

schemes, they achieved the same performance with 25 cells of their systolic array as
with 800 cells used in Baker et al.’s approach.

Thoni et al. developed a further improvement to the systolic array-based Apriori,
where each cell in the systolic array uses a bitmap memory that stores multiple candi-
dates and achieves a 40% improvement over Baker’s version [Thoni and Strey 2009].
This approach is similar to using Apriori and the bitvector data structure. However,
multiple passes are still necessary for datasets of realistic size.

Sun et al. [2008] and Sun and Zambreno [2011] developed an FPGA-based hard-
ware implementation of FP- growth. In their approach, they build the FP-tree using a
systolic tree. Due to limited logic resources, a Virtex 5 XC5VLX330 (the largest 5th
generation Xilinx FPGA) can fit a systolic tree with no more than depth = 5 and
children = 5. To accommodate a larger FP-tree, the authors suggest a database pro-
jection algorithm to divide the tree into many small trees that can fit in single FPGA.
This extra preprocessing step requires overhead that results in low performance for
some datasets.

4. ALGORITHM AND DATA STRUCTURE

Due to the limitations of systolic array-based FIM designs—especially for mining large
databases—we take a radically different approach. First, instead of using a systolic ar-
ray, our processing element (PE) design consists of a FSM-based controller connected to
multiple on chip memories. The controller performs the Eclat algorithm by performing
a depth-first search using an on-chip stack. The controller generates its own sequence
of addresses for accessing off-chip memory when performing support counting as it
traverses the search tree. Our design uses a vertical bitvector representation for both
the input dataset and candidates.

4.1. Eclat Algorithm

Eclat is an abbreviation for Equivalence CLAss Transformation. While Apriori is a
breadth-first search in the sense that all frequent candidates of each generation are
processed before the algorithm moves to the next generation, Eclat uses a depth-first
approach where candidates are recursively generated.

Algorithm 1 describes Eclat. Line 1 initializes the set of candidates to 1-itemsets.
Line 2 to line 11 is the recursive function call to find frequent itemsets. Lines 4 to 10
are the loop to scan all input candidates. In lines 6 to 8, a pair of parents’ candidates
generates a new candidate p, and then the support is calculated. If the candidate is fre-
quent, new candidates will be generated and added to candidate set Ci+1 and function
Eclat() is recursively called.

4.2. Data Representation

The original implementations of Apriori used a traditional horizontal representation
for the transactions. In this case, each transaction is represented as a sorted list of
items. The vertical representation is the transpose (corner turn) of this representation,
where each item is associated with a list of corresponding transactions that contain the
item. In other words, the database is stored according to item rather than transaction
number. Vertical representation generally offers one order of magnitude performance
gain relative to the same algorithm using the horizontal format because it reduces the
volume of I/O operations and avoids repetitive database scanning.

Table I depicts the horizontal format for an example dataset. Table II shows the
equivalent vertical format. Table III shows the equivalent vertical bitvector format,
which is a variation of the vertical format where a binary sequence is stored for each
item where each bit represents a transaction and is set to one if the item is contained

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

An FPGA-Based Accelerator for Frequent Itemset Mining 2:5

Algorithm 1: Eclat

Input: C1 – Frequent Candidate for generation 1
min sup – Minimum support

Output: UiCi – All Frequent Candidates

1: Initialize Ci to C1

2: Eclat(Ci) :
3: Ci+1 = ∅ ;
4: for all ci

j ∈ Ci do

5: for all ci
k ∈ Ci, with k>j do

6: if (|ci
j ∩ ci

k| = i − 1

7: p = ci
j ∪ ci

k
8: support counting(p);
9: if support(p) >= min sup
10: Ci+1 = Ci+1 ∪ p;
11: for all Ci+1 not empty do Eclat(Ci+1)

Table I. Example Horizontal Dataset Representation

Transaction ID Item
1 A B C
2 A C E
3 A E F G
4 B C E G
5 D F
6 A C D E

Table II. Corresponding Vertical Tidset
Representation

Item Transaction ID
A 1 2 3 6
B 1 4
C 1 2 4 6
D 5 6
E 2 3 4 6
F 3 5
G 3 4

within the corresponding transaction. The vector width is fixed for all items. For dense
transaction data, the size of vertical bitvector is smaller than the vertical tidset for-
mat’s. This is an advantage in terms of both run time and memory space. The vertical
bitvector format becomes inefficient in terms of memory space for sparse datasets.
However, support counting with bitvectors can be performed using bitwise logical op-
erations, which allow for a large amount of exploitable fine-grain parallelism. For this
reason we use this format in our accelerator.

5. ACCELERATOR ARCHITECTURE

Figure 1 illustrates our accelerator framework, which is comprised of a controller, two
FIFOs, and two simple functional units that perform a bitwise AND and a population
count operation.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

2:6 Y. Zhang et al.

Table III. Corresponding Vertical
Bitvector Representation

Item
Transaction IDs

1 2 3 4 5 6
A 1 1 1 0 0 1
B 1 0 0 1 0 0
C 1 1 0 1 0 1
D 0 0 0 0 1 1
E 0 1 1 1 0 1
F 0 0 1 0 1 0
G 0 0 1 1 0 0

Fig. 1. The FIM accelerator architecture.

Figure 2 and Table IV illustrates how the controller and FIFOs implement Eclat. The
accelerator reads bitvectors as a sequence of words from external memory and buffers
them in FIFO A and FIFO B. The FIFOs provide source and intermedite bitvectors.
Their contents are fed into a data path that is comprised of a bitwise AND followed
by a population count unit and an accumulator. The population count unit counts the
number of one-bits and accumulates this value into a value that represents the support
of the current candidate. The result of the bitwise AND is also fed back into FIFO B.
The intermediate result stored on FIFO B can also be stored into off-chip memory and
used by a future candidate.

Figure 2 considers an example four-item database. The search tree that is rooted
to a candidate consisting of item 1 is shown in Figure 2. The second level of the tree
shows search states that correspond to candidates {1,2}, {1,3}, and {1,4}. The third level
shows search states that correspond to candidates {1,2,3}, {1,2,4}, and {1,3,4}. There
are two candidates that have a sub-threshold appearance rate in the database, which
are crossed out in the figure.

Table IV shows all the steps taken during the depth-first search. The second and
third columns show the contents of FIFO A and B. The third column is the result
stored back in FIFO B. The fourth column indicates if the candidate is valid (has an
appearance rate greater than the threshold). The fifth and sixth tell us whether the
result should be output or flushed. Below we describe each step in detail.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

An FPGA-Based Accelerator for Frequent Itemset Mining 2:7

Fig. 2. An example for FIFO and memory control.

Table IV. FIFO Control Sequence for Example in Figure 2

Step FIFO B FIFO A Result (in FIFO B) Valid Output Flush
1 1 2 1 & 2 Yes Yes No
2 1 & 2 3 1 & 2 & 3 Yes Yes No
3 1 & 2 & 3 4 1 & 2 & 3 & 4 No No Yes
4 1 & 2 4 1 & 2 & 4 No No Yes
5 1 3 1 & 3 Yes Yes No
6 1&3 4 1 & 3&4 Yes Yes Yes
7 1 4 1&4 Yes Yes Yes

Step 1. FIFO B loads bitvector 1 and FIFO A reads bitvector 2 from off-chip memory.
The intermediate result is the bitwise AND of bitvectors 1 and 2, which we represent
as 1&2. For example, if there are 6 total transactions, item 1 appears in transactions 1,
2, 3, and 4, item 2 appears in transactions 1, 2, 4, and 6, and threshold = 2, the result
is 111100 AND 110101 = 110100 and has a population count of 3, thus the candidate
is valid. This result is stored back to FIFO B and output to off-chip memory as an
intermediate result that may later be loaded for a parallel branch.

Step 2. FIFO B uses the previous intermediate result 1&2. FIFO A loads bitvector
3 from off-chip memory. The result is the bitwise AND of bitvector 1&2 and bitvector
3, represented as 1&2&3. This candidate is also valid so it is sent into FIFO B and
output to off-chip memory.

Step 3. FIFO B uses the previous step’s result 1&2&3. FIFO A loads bitvector 4 from
off-chip memory. The result is represented as 1&2&3&4. The candidate is invalid and
is not sent to off-chip memory. Since this is a leaf, FIFO B is flushed.

Step 4. FIFO B loads intermediate result 1&2 from off-chip memory and FIFO A
loads bitvector 4 from off-chip memory. The result is 1&2&4. The candidate is invalid

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

2:8 Y. Zhang et al.

Table V. Resource Utilization Summary

Resource
128-bit Accelerator 256-bit Accelerator Full Design

Utilization Percentage Utilization Percentage Utilization Percentage
Combination 6,908/

3.4%
7,994/

3.5%
38,522/

19%ALUTs 203,520 203,520 203,520

Logic registers
5,991/

2.9%
7,033/

3.5%
44,145/

22%203,520 203,520 203,520
Block Memory 1,382,144/

9%
1,688,320/

11%
5,939,472/

39%bits 15,040,512 15,040,512 15,040,512
DSP block

8/768 1% 8/768 8% 24/768 3%18 bit elements

so it is not stored to off-chip memory. The recursion has now reached the leaf so FIFO
B is flushed and the design moves to next branch of the tree.

Step 5. FIFO B loads bitvector 1 and FIFO A loads bitvector 3 from off-chip. The
result is 1&3. The candidate is valid. FIFO B is flushed but does not store the last
intermediate result to off-chip memory since it will not be needed in later branches
(based on the property of Eclat trees where branch lengths decrease from left to
right).

Step 6. FIFO B uses previous result 1&3. FIFO A loads bitvector 4 from off-chip.
The design performs the bitwise AND to compute the result 1&3&4. The candidate is
valid. This branch terminates so FIFO B is flushed.

Step 7. FIFO B loads bitvector 1 and FIFO A loads bitvector 4 from off-chip. The
result is 1&4. The candidate is valid. The design stores the result back to FIFO B. The
design has now completed its workload and reinitializes the FIFOs.

The FIFOs are flushed to clear intermediate results that are not needed in the next
step of computation. There are two situations where this occurs. First, the DFS search
reaches the leaf node, and the next step will start a new branch. Step 6 and Step 7 in
the example shown in Table IV depict this situation. The second situation is when the
search result is invalid, which forces the algorithm to prune the current branch. Steps
3 and Step 4 in the example shown in Table IV depict this situation.

Our implementation processes the bitvectors in a slightly different way than the
original Eclat. For instance, in Step 2, our design evaluates (1 & 2) bitwise AND 3,
while the traditional Eclat algorithm would have evaluated (1&2) bitwise AND (1&3)
to determine the support of 1&2&3.

Table V summarizes the resource utilization of our design. Note that the memory
and FIFO control during the recursive tree search is implemented in hardware as a
finite state machine with a stack.

5.1. Memory Interface

Our platform is a GiDEL PROCStar III PCIe add-in card. It contains four Altera
Stratix III 260 FPGAs. Each FPGA is connected to three independent off-chip DRAM
memory banks, bank A, bank B, and bank C. Banks A and B have a peak bandwidth
of 4 GB/s and bank C has a peak bandwidth of 2.1 GB/s.

GiDEL’s design software can generate customized interfaces to these banks. These
customized interfaces may be configured to have, for example, seven 32-bit internally
arbitrated ports or three 256-bit internally arbitrated ports. This provides a tradeoff
between having few wide ports or a larger number of narrow ports.

Near-maximum memory throughout can be achieved with any port width, but only
when accessing consecutive words from the memory. The arbitration logic causes pre-
emption when multiple processing elements access the ports concurrently, which re-
sults in interruptions in the stream of memory requests and degrades performance. As
a result, we use a 256-bit port, the widest possible port size.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

An FPGA-Based Accelerator for Frequent Itemset Mining 2:9

Fig. 3. Parallelizing multiple FIM Accelerators.

5.2. Parallelizing the Accelerator Architecture

Figure 3 shows our top-level architecture, showing how multiple processing ele-
ments and the host CPU are connected to GiDEL’s memory system. We instance two
256-bit accelerators for Bank A and B and a 128-bit accelerator for Bank C (an inher-
ent limitation of the platform) on each of the four FPGAs.

As shown in Figure 4, in order to distribute the workload to the pool of PEs, we
dynamically assign each of the topmost branches of the depth-first search to each pro-
cessing element. In other words, each PE is assigned a branch with a different starting
item. Since the running time of each branch varies, a new branch is assigned to each
PE as it completes it workload. We repeat this process until all branches have been
processed.

6. USE OF ON-CHIP SCRATCHPAD MEMORY

The performance of our accelerator is limited by memory bandwidth. Thus, for a given
workload, a reduction in the required number of off-chip memory accesses will improve
performance. In this section, we describe an optimization where intermediate results
across branches are compressed and stored on-chip so that they do not need to be
loaded from off-chip. These intermediate results are kept on chip to be used later to
construct future candidates.

There are two primary types of data exchanges between a processing element
and off-chip memory: source transactions, in which the original bitvectors from the
database are read, and intermediate results, in which previously computed bitvectors
corresponding to candidates of k items that had previously been stored to off-chip mem-
ory are read back to construct candidates of k + 1 items.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

2:10 Y. Zhang et al.

Fig. 4. Distributing tasks to accelerators.

Storing some of these intermediate results in a customized on-chip cache would re-
duce off-chip transactions. Further, an efficient lossless compression scheme for the
intermediate results would allow more of them to be stored on-chip. In this section,
we describe a method for compressing the intermediate results in a way that can be
performed in hardware.

Our compression scheme exploits the fact that intermediate bitvectors, especially
those farther from the root of the search tree, are sparse in sense that they have rel-
atively few one-bits. To exploit this, we employ a compressed sparse storage format.
We can further improve the performance of this compression technique by storing the
intermediate bitvectors using differential encoding.

This approach has two characteristics that lend themselves to FPGA implementa-
tion. The first is how the compression and decompression can be integrated directly in
the memory interface. On a CPU, these operations would interfere with the primary
FIM computations, potentially causing cache pollution and additional off-chip mem-
ory accesses. Second, the design has complete control over the scratchpad memory,
ensuring that the compressed intermediate values and the table that tracks them are
always stored on chip. On a CPU-based implementation, there’s no direct way to guar-
antee that specific arrays are kept on chip without unintended write backs to main
memory. Thus, the potential benefits of implementing the same compression scheme
in software would not offset the overheads it requires.

6.1. Differential Encoding

Assume two intermediate candidate bitvectors that are adjacent on the same branch
of the search tree:

A = 1&2, (1)

B = 1&2&3. (2)

Because they were generated consecutively they will differ only slightly, allowing us to
replace one of these bitvectors with a difference vector:

C = A xor B. (3)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

An FPGA-Based Accelerator for Frequent Itemset Mining 2:11

Algorithm 2: Bitvector Compression and Storage
Input: A — previous generation bitvector

B – Latest generation bitvector
Cs – Capacity of scractch memory
Co – Occupied scratch memory size
Ct — Compression Threshold for compressed bitvector

Output: Cc – Compressed bitvector A

1: C = A xor B;
2: Cc = Compression(C);
3: if (sizeof (Cc) >Ct)
4: Store A to off-chip and discard Cc
5: elsif (Co+ Cc >Cs)
6: Store A to off-chip and discard Cc;
7: else
8: Store Cc to on-chip and discard A;
9: save the address of A to address table
10: end if;

Storing C on-chip instead of A would increase the sparsity and improve compression.
A can be reconstructed from C, using:

A = C xnor B. (4)

Using Formulas (3) and (4), we can generate C and reconstruct A using little hard-
ware logic. The on-chip memory will not introduce any delay as long as we pipeline the
compression and decompression.

Note this example shows only two generations. In general, if only the last genera-
tion’s result is stored in FIFO B in a nonencoded representation, all previous genera-
tion’s intermediate results can be encoded relative to it.

6.2. Compression

The total on chip memory in our FPGA is limited, consisting of less than 2MB of total
capacity, and generally, it is not even possible to use a large portion of this capacity for a
single, monolithic memory (due to limitations in the routing fabric). Also, the proposed
bitvector compression technique will perform poorly in the earlier generations (i.e.,
closer to the tree root), where there are more one-bits in the bitvectors.

Each bitvector will have a width equal to the number of transactions, which is typ-
ically thousands of bits or more. As a result, bitvectors are stored as a sequence of
consecutive words (equal in width to the memory port) in the on-chip FIFOs. In our
compressed sparse format, we store only the words that contain at least one one-bit.
Each word is accompanied with an index that specifies where that word originally
appeared in the original bitvector.

As shown in Algorithm 2, in order to maximize the number of intermediate vectors
stored on chip, we only store vectors whose compression ratio, using our sparse format,
exceeds a specified compression threshold. Note that this compression threshold is
separate from the FIM threshold, which is still used as the pruning criteria in the FIM
algorithm.

In line 1 the algorithm calculates the difference of bitvectors A and B and store them
as C. In line 2, the algorithm discards the all zero words and annotates the bitvector
with the word indices. In lines 3 and 5, the algorithm checks the compression ratio
and the amount of remaining on-chip memory to fit the compressed bitvector. If the
compression ratio is too high or if there is insufficient remaining memory capacity,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

2:12 Y. Zhang et al.

Fig. 5. The FIM accelerator architecure enhanced with scratchpad memory.

bitvector A will be sent off-chip in noncompressed format. Otherwise, bitvector A is
discarded and the compressed data is stored in on-chip memory.

The decompression of Cc and reconstruction of A are similar so we don’t show this
procedure here.

After adding the on-chip memory, which we call scratchpad memory, and related
logic, the architecture of our accelerator is shown in Figure 5. As shown, scratchpad
memory, compression and arbitration logic are added between FIFO B and off-chip
memory.

7. EVALUATION

In this section we describe the performance results of our processing element design
without the scratchpad memory. In the next section we provide an analysis of perfor-
mance improvement after adding the scratchpad memory optimization.

7.1. Hardware Platform and Software Environment

The FPGA card’s block diagram is shown in Figure 6. As shown in Figure 6(a), each
FPGA is connected to two 2 GB of SODIMM and one 256 MB DDR2 onboard DRAM.
The DDR2 DRAM is bank A of FPGA, operating at 667MHz. The two SODIMMs are
bank B and C. Bank B operates at 667MHz, while bank C operates at 360MHz.

As shown in Figure 6(b), each FPGAs is connected to its immediate neighbor on the
left and right via the L/R bus (though we do not utilize this bus in our design). Each
FPGA is also connected to a main bus, link bus, and local bus. The local bus not only
connects to all devices, but also the PCIe bridge.

We run our comparative results of Borgelt’s Eclat on a Dell PowerEdge R710
server. The server contains two Intel Nehalem Xeon 5520 CPUs. The CPU runs
at 3.2GHz and the system memory is 16 GB. The software baseline is written in
C++ and compiled by g++ 4.4 with optimization level 3 (−O3). The parallel version
for 16-thread all runs at this server. The parallel is compliled using g++ 4.4 with
OpenMP 4.0.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

An FPGA-Based Accelerator for Frequent Itemset Mining 2:13

Fig. 6. Gidel board FPGA and memory framework.

Table VI. Test Datasets Characteristics

Dataset Size(MB) Average Length Transaction Number Number of Items
T40I10D0 3N500K 63 40 500K 299
T40I10D0 3N1000K 133.9 40 1000K 300
T60I20D0 5N500K 103.8 60 500K 500
T90I20D0 5N500K 155.3 90 500K 499

In our FPGA implementation, we attach an accelerator to each memory bank. Bank
A and bank B are configured for a 256-bit word while bank C is limited to a 128-bit
word. The design runs at 200MHz.

7.2. Test Data

Most of the FPGA FIM implementations in the literature use Bodon’s Apriori imple-
mentation [Bodon and Ronyai 2003] as their software baseline. However, we compare
to Borgelt ’s implementation [Borgelt 2003] since it is a the state-of-the-art software
Eclat implementation, is still under active development and being improved, and
achieves substantially higher performance than Bodon’s implementation.

Table VI summarizes our test datasets. These are synthetic datasets generated by
IBM’s Synthetic Data Generator [IBM 2012].

7.3. Performance Results

Due to limitations of the memory controller, memory Bank A and Bank B supports a
word width of 256 bits while Bank C only supports a word width of 128 bits. Table VII
shows our performance results for a single 128-bit and 256-bit processing element,
as well as the performance of the entire coprocessor card (eight 256-bit processing
elements and four 128-bit processing elements across four Stratrix III EP3SE260
FPGAs) relative to Borgelt’s Eclat implementation running on our Xeon 5520. Note
that the 256-bit accelerator running at 200MHz has a capacity of 6.4GB/s (in terms of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

2:14 Y. Zhang et al.

Table VII. Accelerator Performance

256-bit PE 128-bit PE Overall
D

at
as

et

T
h

re
sh

ol
d

S
er

ia
l

S
W

b
as

el
in

e

16
-t

h
re

ad
s

O
p

en
M

P

R
u

n
n

in
g

ti
m

e(
s)

S
p

ee
d

u
p

R
u

n
n

in
g

T
im

e(
s)

S
p

ee
d

u
p

R
u

n
n

in
g

T
im

e(
s)

S
p

ee
d

u
p

co
m

p
ar

ed

S
p

ee
d

u
p

C
om

p
ar

ed

(s
)

im
p

le
m

en
ta

ti
on

(s
)

to
1-

th
re

ad

to
16

-t
h

re
ad

T40I10D0 3N500K 0.01 819.5 87.7 166.41 4.92 287.82 2.85 21.33 38.41 4.12
T40I10D0 3N1000K 0.02 270.6 33.4 56.81 4.76 99.63 2.72 7.132 37.94 4.68
T60I20D0 5N500K 0.02 393.5 43.8 84.77 4.64 146.96 2.68 12.52 31.43 3.49
T90I20D0 5N500K 0.05 685.3 78.2 156.29 4.39 270.71 2.53 23.43 29.25 3.38

width x clock rate), but the maximum sustainable memory bandwidth offered by the
DRAM is 3.2 GB/s. This effectively reduces our hardware utilization. While this is an
opportunity to reduce our core clock rate, we opted to continue to target 200 MHz in
order to keep the design fast enough to target platforms with higher off-chip memory
bandwidth.

As shown, the 256-bit PE achieves a speedup of 4 to 5 compared with the baseline
and the 128-bit PE achieves a speedup of 2–3. The entire system achieves a speedup
of 30 to 40.

7.4. Design Space Exploration

As described in Section 6, storing compressed intermediate bitvectors on chip can po-
tentially improve accelerator performance by reducing the number of intermediate
results that need to be read from off-chip memory. However, several important param-
eters will influence the effectiveness of this approach. These include the following.

— Word size. Our compression technique relies on eliminating any word that contains
only zero bits. Using longer words increases the likelihood that there is a one-bit
within the word, but will reduce the number of bits required to index the words, re-
ducing the overhead of the metadata required by the compression scheme. Note that
the word size used in the compression scheme does not necessarily need to match
the word size of the memory port. In order to explore the effect of the compression
word size, we decoupled the memory word size from the compression word size.

— Scratchpad memory size. Larger scratchpads will allow more intermediate values be
kept on chip but might require longer access times. Instancing larger scratchpads
will also make it challenging to meet timing requirements during place-and-route.

— Compression threshold. Higher compression threshold values will prevent denser,
less compressible intermediate results from filling the on chip memory but will also
prevent more frequently accessed intermediate results from lower in the tree from
being stored.

In order to explore the effect of these parameters we will test our design under using
combinations of these parameter values. In order to rapidly explore the design space
we use a software model. Using the model, we estimate the performance improvement
by comparing the number of memory accesses required with the scratchpad with the
number required without the scratchpad. We report the ratio of these values as the
potential speedup.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

An FPGA-Based Accelerator for Frequent Itemset Mining 2:15

Table VIII. Scratchpad Memory Speedup for Dataset T40I10D0 3N500K with FIM Threshold 0.01

Word Scratchpad
Length Capacity Compression Threhold

(bit) (Kb) 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
16 512 1.45 1.43 1.45 1.47 1.5 1.53 1.55 1.56 1.56 1.56
16 1024 1.73 1.78 1.82 1.85 1.86 1.87 1.87 1.83 1.77 1.56
16 2048 1.73 1.78 1.82 1.87 1.92 1.96 1.99 2.01 2.02 2.02
32 512 1.27 1.3 1.3 1.28 1.26 1.28 1.3 1.31 1.34 1.38
32 1024 1.27 1.35 1.44 1.55 1.66 1.74 1.77 1.74 1.72 1.75
32 2048 1.27 1.35 1.44 1.55 1.66 1.74 1.78 1.81 1.86 1.95
64 512 1.01 1.04 1.06 1.08 1.09 1.1 1.11 1.1 1.16 1.22
64 1024 1.01 1.04 1.08 1.13 1.2 1.27 1.36 1.47 1.61 1.65
64 2048 1.01 1.04 1.08 1.13 1.2 1.27 1.36 1.47 1.62 1.76

128 512 1 1 1 1 1 1.01 1.02 1.04 1.06 1.08
128 1024 1 1 1 1 1 1.01 1.04 1.09 1.17 1.32
128 2048 1 1 1 1 1 1.01 1.04 1.09 1.17 1.32

Table IX. Performance Summary

D
at

as
et

T
h

re
sh

ol
d

S
er

ia
l

16
-t

h
re

ad
(s

)

In
ti

al
M

em
or

y

25
6-

b
it

S
p

ee
d

u
p

12
8-

b
it

S
p

ee
d

u
p

S
cr

at
ch

p
ad

O
ve

ra
ll

R
u

n
ti

m
e(

s)

O
ve

ra
ll

S
p

ee
d

u
p

S
p

ee
d

u
p

C
om

p
ar

ed

S
of

tw
ar

e

L
oa

d
ti

m
e(

s)

S
p

ee
d

u
p

(1
M

b
)

to
16

-t
h

re
ad

B
as

el
in

e(
s)

T40I10D0 3N500K 0.01 819.5 87.7 0.316 4.92 2.85 1.77 12.053 67.99 7.28
T40I10D0 3N1000K 0.02 270.6 33.4 0.584 4.76 2.72 1.25 5.705 47.43 5.85
T60I20D0 5N500K 0.02 393.5 43.8 0.476 4.64 2.68 1.43 8.754 44.95 5.00
T90I20D0 5N500K 0.05 685.3 78.2 0.436 4.39 2.53 1.41 16.614 41.25 4.71

In Table VIII, we show how scratchpad and compression parameters affect perfor-
mance for dataset T40I10D0 3N500K. In general, performance is best with smaller
word sizes. Surprisingly, performance improves only slightly with a larger on-chip
memory and achieves higher performance with higher compression threshold.

Our results are shown in Table IX. In this table, we also list cost of the initial mem-
ory load from host to on-board DDR memory (PCIe DMA performance). When using
a fully populated design (12 PEs) with the scratchpad memory and compression and
parameters determined in this section (1Mb size, word size 32, compresion threshold
selected based on optimal result), the final speedup compared to serial version ranges
from 42 to 68. Using the OpenMP framework described in our previous work [Zhang
et al. 2011], we can also compare our result with a 16-thread X86 implementation. The
speedup against 16-thread parallel version ranges between 4.71 and 7.28.

8. CONCLUSION

In this article we present a novel hardware accelerator for frequent itemset mining.
Unlike previous work, our design is compact and can process large datasets. The per-
formance of our accelerator is not limited by the logic resource but by memory band-
width. Our design is scalable and suitable for large scale data mining. We also present

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

2:16 Y. Zhang et al.

a compression scheme to take advantage of the on-chip memory to reduce the total
volume of data that need be exchanged with off-chip DRAM during runtime.

Due to the inherited limitation of the data structure bitvector, this architecture is
not efficient for datasets with very low threshold (threshold <1%). This also leaves the
possibility for further work to improve the design.

REFERENCES

Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules in large databases. In
Proceedings of the 20th International Conference on Very Large Data Bases. 487–499.

Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining association rules between sets of items in large
databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data.

Alachiotis, N., Berger S. A., and Stamatakis, A. 2011. Accelerating phylogeny-aware short DNA read align-
ment with FPGAs. In Proceedings of the IEEE Symposium on Field Programmable Custom Computing
Machines (FCCM’11).

Baker, Z. K. and Prasanna, V. K. 2005. Efficient hardware data mining with the Apriori algorithm on FP-
GAs. In Proceedings of the IEEE Symposium on Field Programmable Custom Computing Machines
(FCCM’05). 3–12.

Baker, Z. K. and Prasanna, V. K. 2006. An Architecture for efficient hardware data mining using recon-
figurable computing systems. In Proceedings of the IEEE Symposium on Field Programmable Custom
Computing Machines (FCCM’06).

Bodon, F. 2003. A fast apriori implementation. In Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations.

Bodon, F. 2006 A survey on frequent itemset mining. Tech. rep., Budapest University of Technology and
Economics.

Bodon, F. and Ronyai, L. 2003. Trie: An alternative data structure for data mining algorithms. Math.
Comput. Model. 38, 7–9, 739–751.

Borgelt, C. 2003. Efficient implementations of Apriori and Eclat. In Proceedings of the IEEE ICDM
Workshop on Frequent Itemset Mining Implementations.

FIMI Repository. 2003, Frequent itemset mining dataset repository. http://fimi.ua.ac.be/data.
Fukuzaki, M., Seki, M., Kashima, H., and Sese, J. 2010. Finding itemset-sharing patterns in a large itemset-

associated graph. In Proceedings of the 14th Pacific-Asia Conference on Advances in Knowledge Discov-
ery and Data Mining. Vol. II, 147–159.

Gidel Ltd. 2009. PROStarIII Data Book. Version 1.0.
Goethals, B. 2002. Survey on frequent pattern mining. Tech. rep., Helsinki Institute for Information

Technology.
Goethals, B. and Zaki, M. J. 2003. Advances in frequent itemset mining implementations: Introduction to

FIMI03. In Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations.
Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. In Proceedings

of the ACM SIGMOD International Conference on Management of Data (SIGMOD’00). ACM, New York,
NY, 1–12.

Heighton, J. 2006. Designing signal processing systems for FPGAs. In Proceedings of the Conference and
Exhibition on Design, Automation and Test in Europe (DATE’06).

IBM. 2012. IBM synthetic data generator. http://sourceforge.net/projects/ibmquestdatagen/.
Park, J. S., Chen, M. S., and Yu, P. S. 1997. Using a hash-based method with transaction trimming for mining

association rules. IEEE Trans. Knowl. Data Eng. 9, 5, 813–825.
Sun, S. and Zambreno, J. 2011. Design and analysis of a reconfigurable platform for frequent pattern mining.

IEEE Trans. Parallel Distrib. Syst. 22, 9, 1497–1505.
Sun, S., Steffen, M., and Zambreno, J. 2008. A reconfigurable platform for frequent pattern. In Proceedings

of the International Conference Reconfigurable Computing and FPGAs (ReConFig’08).
Thoni, D. W. and Strey, A. 2009. Novel strategies for hardware acceleration of frequent itemset mining with

the Apriori algorithm. In Proceedings of the International Conference on Field Programmable Logic and
Applications (FPL’09).

Wen, Y. H., Huang, J. W., and Chen, M. S. 2008. Hardware-enhanced association rule mining with hashing
and pipelining. IEEE Trans. Knowl. Data Eng. 20, 6.

Witten, I. and Frank, E. 2005. Data Mining: Practical Machine Learning Tools and Techniques. Morgan
Kaufman, 27.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

�

�

�

�

�

�

�

�

An FPGA-Based Accelerator for Frequent Itemset Mining 2:17

Zaki, M. J. 2000. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12, 3.
Zhang, Y., Zhang, F., and Bakos, J. 2011. Frequent Itemset mining on large-scale shared memory machines.

In Proceedings of the IEEE International Conference on Cluster Computing. 585–589.
Zhou, L. and Prasanna, V. K. 2008. Scalable hybrid designs for linear algebra on reconfigurable computing

systems. IEEE Trans. Comput. 57, 12.

Received May 2012; revised September 2012; accepted December 2012

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 2, Publication date: May 2013.

